Advertisements
Advertisements
Question
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
Solution
x2 dy + (xy + y2) dx = 0
⇒ x2 dy = -(xy + y2 ) dx
⇒ `(dy)/(dx) = - ((xy + y^2))/x^2`
Let y = vx
`(dy)/(dx) = v + x (dv)/(dx)`
`v + x (dv)/(dx) = - ((vx^2 + v^2 x^2))/x^2`
`v + x (dv)/(dx) = - (v + v^2)`
` x (dv)/(dx) = - 2v - v^2`
⇒ `(dv)/(v^2 + 2v) = - (dx)/x`
⇒ `(dv)/(v^2 + 2v) + (dx)/x = 0`
⇒ ` int_ (dv)/((v + 1)^2 - (1)^2) + int_ (dx)/x = 0`
⇒ `(1)/(2) log |[ v+ 1 -1]/[v + 1 + 1]| + log x = c`
⇒ ` log |[ v]/[ v + 2]| + 2 log x = 2c`
⇒ ` log |[ vx^2]/[ v + 2]| = 2c`
⇒ ` |[ vx^2]/[ v + 2]| = e^2c`
⇒ ` ( vx^2)/( v + 2) = ± e^2""^c = "A" ("say")`
⇒ `(yx)/(y/2 + 2) = "A"`
⇒ `x^2y = "A" (y + 2x)`
Now, when y = 1, x = 1
⇒ 1 = A (3)
⇒ A = `(1)/(3)`
∴ `y + 2x = 3x^2y`
APPEARS IN
RELATED QUESTIONS
If y = eax. cos bx, then prove that
`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : e4x. cos 5x
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
`d/dx(10^x) = x*10^(x - 1)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
Differentiate `sqrt(tansqrt(x))` w.r.t. x
y = `2sqrt(cotx^2)`
y = `cos sqrt(x)`
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`