Advertisements
Advertisements
Question
For any three vectors `veca, vecb, vecc`, show that `veca - vecb, vecb - vecc, vecc - veca` are coplanar.
Solution
`[veca - vecb, vecb - vecc, vecc - veca]`
= `(veca -vecb). { (vecb - vecc) xx ( vecc - veca)}`
= `(veca- vecb). { vecb xx vecc - vecb xx veca - vecc xx vecc + vecc xx veca}`
= `(veca- vecb). { vecb xx vecc + veca xx vecb - veca xx vecc }`
= `veca . (vecb xx vecc) - veca . (veca xx vecb ) - a . (vec a xx vecc) - vecb . ( vecb xx vecc) - b .(veca xx vecb) + vecb. ( veca xx vecc) `
= ` veca vecb vecc - veca vecb vecc = 0`
Hence, `veca - vecb, vecb - vecc, vecc - veca` are coplanar.
APPEARS IN
RELATED QUESTIONS
A line makes angles of measures 45° and 60° with positive direction of y and z axes respectively. Find the d.c.s. of the line and also find the vector of magnitude 5 along the direction of line.
Find p and k if the equation px2 – 8xy + 3y2 +14x + 2y + k = 0 represents a pair of perpendicular lines.
Find the angle between the lines `(x -1)/4 = (y - 3)/1 = z/8` and `(x-2)/2 = (y + 1)/2 = (z-4)/1`
Find the equation of a line passing through the points P (-1, 3, 2) and Q (-4, 2, -2). Also, if the point R (5, 5, λ) is collinear with the points P and Q, then find the value of λ.
Find the image of the point (2, -1, 5) in the line `(x - 11)/(10) = (y + 2)/(-4) = (z + 8)/(-11)`. Also, find the length of the perpendicular from the point (2, -1, 5) to the line.