English

For Any Three Vectors Veca, Vecb, Vecc, Show that Veca - Vecb, Vecb - Vecc, Vecc - Veca Are Coplanar - Mathematics

Advertisements
Advertisements

Question

For any three vectors `veca, vecb, vecc`, show that `veca - vecb, vecb - vecc, vecc - veca` are coplanar.

Sum

Solution

`[veca - vecb, vecb - vecc, vecc - veca]`

= `(veca -vecb). { (vecb - vecc) xx ( vecc - veca)}`

= `(veca- vecb). { vecb xx vecc - vecb xx veca - vecc xx vecc + vecc xx veca}`

= `(veca- vecb). { vecb xx vecc + veca xx vecb - veca xx vecc }`

= `veca . (vecb xx vecc) - veca . (veca xx vecb ) - a . (vec a xx vecc) - vecb . ( vecb xx vecc) - b .(veca xx vecb) + vecb. ( veca xx vecc) `

= ` veca vecb vecc - veca vecb vecc = 0`

Hence, `veca - vecb,  vecb - vecc,  vecc - veca` are coplanar.

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March)

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×