English

Find dydx if, y = log(10x4 + 5x3 - 3x2 + 2) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)

Sum

Solution

y = log(10x4 + 5x3 - 3x2 + 2)

Differentiating both sides w.r.t.x, we get

`"dy"/"dx" = "d"/"dx"[log (10"x"^4 + 5"x"^3 - 3"x"^2 + 2)]`

`= 1/(10"x"^4 + 5"x"^3 - 3"x"^2 + 2) * "d"/"dx" (10"x"^4 + 5"x"^3 - 3"x"^2 + 2)`

`= 1/(10"x"^4 + 5"x"^3 - 3"x"^2 + 2) * [10(4"x"^3) + 5(3"x"^2) - 3(2"x") + 0]`

∴ `"dy"/"dx" = (40"x"^3 + 15"x"^2 - 6"x")/(10"x"^4 + 5"x"^3 - 3"x"^2 + 2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Differentiation - EXERCISE 3.1 [Page 91]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×