Advertisements
Advertisements
Question
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Solution
y = log(10x4 + 5x3 - 3x2 + 2)
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"[log (10"x"^4 + 5"x"^3 - 3"x"^2 + 2)]`
`= 1/(10"x"^4 + 5"x"^3 - 3"x"^2 + 2) * "d"/"dx" (10"x"^4 + 5"x"^3 - 3"x"^2 + 2)`
`= 1/(10"x"^4 + 5"x"^3 - 3"x"^2 + 2) * [10(4"x"^3) + 5(3"x"^2) - 3(2"x") + 0]`
∴ `"dy"/"dx" = (40"x"^3 + 15"x"^2 - 6"x")/(10"x"^4 + 5"x"^3 - 3"x"^2 + 2)`
APPEARS IN
RELATED QUESTIONS
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
If y = x2, then `("d"^2y)/("d"x^2)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
Derivative of ex sin x w.r.t. e-x cos x is ______.
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = cos (sin x)
y = sin (ax+ b)
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.