Advertisements
Advertisements
Question
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
Solution
Given that ex + ey = ex+y.
Differentiating both sides w.r.t. x, we have
`"e"^x + "e"^y ("d"y)/("d"x) = "e"^(x + y) (1 + ("d"y)/("d"x))`
or `("e"^y - "e"^(x + y)) ("d"y)/("d"x) = "e"^(x + y) - "e"^x`
Which implies that `("d"y)/("d"x) = ("e"^(x + y) - "e"^x)/("e"^y - "e"^(x + y))`
= `("e"^x + "e"^y - "e"^x)/("e"^y - "e"^x - "e"^y)`
= –ey–x.
APPEARS IN
RELATED QUESTIONS
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
If y = x10, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
Derivative of ex sin x w.r.t. e-x cos x is ______.
`"d"/("d"x) [sin(1 - x^2)]^2` = ______.
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = `sec (tan sqrt(x))`
y = `cos sqrt(x)`
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
The differential equation of (x - a)2 + y2 = a2 is ______
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`