Advertisements
Advertisements
Question
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
Solution
Put x = tan θ
Where `(-pi)/6 < θ < pi/6`
Therefore, y = `tan^-1 ((3tan theta - tan^3theta)/(1 - 3 tan^2theta))`
= `tan^-1 (tan 3theta)`
= 3θ ...`(because (-pi)/2 < 3theta < pi/2)`
= 3tan–1x
Hence, `("d"y)/("d"x) = 3/(1 + x^2)`
APPEARS IN
RELATED QUESTIONS
If y = eax. cos bx, then prove that
`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
State whether the following is True or False:
The derivative of polynomial is polynomial.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
If y = x2, then `("d"^2y)/("d"x^2)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
If y = log (cos ex), then `"dy"/"dx"` is:
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`