Advertisements
Advertisements
Question
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Solution
`x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
∴ `x^2y^2 = tan^-1(sqrt(x^2 + y^2)) + cot^-1(sqrt(x^2 + y^2))`
∴ `x^2y^2 = π/2 ...[∵ tan^-1 x + cot^-1 x = π/2]`
Differentiating both sides w.r.t. x, we get,
`x^2.d/dx(y^2) + y^2.d/dx(x^2) = 0`
∴ `x^2 × 2y dy/dx + y^2 × 2x = 0`
∴ `2x^2y dy/dx = – 2xy^2`
∴ `x dy/dx = – y`
∴ `dy/dx = -y/x`.
APPEARS IN
RELATED QUESTIONS
if `y = tan^2(log x^3)`, find `(dy)/(dx)`
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find `"dy"/"dx"` if cos (xy) = x + y
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : e2x . tan x
Find the second order derivatives of the following : e4x. cos 5x
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
`d/dx(10^x) = x*10^(x - 1)`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
Find `"dy"/"dx"`, if y = xx.
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
`"d"/("d"x) [sin(1 - x^2)]^2` = ______.
Differentiate `sqrt(tansqrt(x))` w.r.t. x
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = `sec (tan sqrt(x))`
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
If y = 2x2 + a2 + 22 then `dy/dx` = ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`