Advertisements
Advertisements
Question
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
Solution
y = (6x3 – 3x2 – 9x)10
Differentiating both sides w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x)[(6x^3 - 3x^2 - 9x)^10]`
= `10(6x^3 - 3x^2 - 9x)^9 xx "d"/("d"x) (6x^3 - 3x^2 - 9x)`
= 10(6x3 − 3x2 − 9x)9 × [6(3x2) – 3(2x) − 9]
∴ `("d"y)/("d"x)` = = 10(6x3 − 3x2 − 9x)9 . (18x2 − 6x − 9)
APPEARS IN
RELATED QUESTIONS
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
Find `"dy"/"dx"`, if y = xx.
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
If y = log (cos ex), then `"dy"/"dx"` is:
y = cos (sin x)
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`