Advertisements
Advertisements
Question
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
Solution
y = `(5x + 7)/(2x - 13)`
Differentiating both sides w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x) ((5x + 7)/(2x - 13))`
= `((2x - 13)*"d"/("d"x) (5x + 7) - (5x + 7)*"d"/("d"x)(2x - 13))/(2x - 13)^2`
= `((2x - 13)(5 xx 1 + 0) - (5x + 7)(2 xx 1 - 0))/(2x - 13)^2`
= `((2x - 13)(5) - (5x + 7)(2))/(2x - 13)^2`
= `(10x - 65 - 10x - 14)/(2x - 13)^2`
∴ `("d"y)/("d"x) = (-79)/(2x - 13)^2`
Now, by derivative of inverse function, the rate of change of demand (x) w.r.t. price(y) is
`("d"x)/("d"y) = 1/((("d"y)/("d"x)))`, where `"dy"/"dx" ne 0`
i.e. `("d"x)/("d"y) = 1/((- 79)/(2x - 13)^2)`
`= (-(2x - 13)^2)/79`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
The derivative of f(x) = ax, where a is constant is x.ax-1.
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
y = sin (ax+ b)
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`