English

The derivative of f(x) = ax, where a is constant is x.ax-1. - Mathematics and Statistics

Advertisements
Advertisements

Question

The derivative of f(x) = ax, where a is constant is x.ax-1.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is False.

Explanation:

f(x) = ax

f(x) = ax.log a 

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [Page 100]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q III] 3) | Page 100

RELATED QUESTIONS

Solve the following differential equation: 
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1


Find `dy/dx if x + sqrt(xy) + y = 1`


Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81


Find the second order derivatives of the following : e2x . tan x


Find `"dy"/"dx"` if, y = log(log x)


Choose the correct alternative.

If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`


If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find `"dy"/"dx"`, if y = xx.


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?


If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______


Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


The differential equation of (x - a)2 + y2 = a2 is ______ 


If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`


Solve the following.

If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×