Advertisements
Advertisements
Question
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
Solution
We have x = sec3θ and y = a tan3θ
Differentiating w.r.t. θ , we get
`("d"x)/("d"theta) = 3"a" sec^2 theta "d"/("d"theta) (sec theta)`
= 3a sec3θ tanθ
And `("d"y)/("d"theta) = 3"a" tan^2 theta "d"/("d"theta) (tan theta)`
= 3a tan3θ sec2θ.
Thus `("d"y)/("d"x) = (("d"y)/("d"theta))/(("d"x)/("d"theta))`
= `tantheta/sectheta`
= sin θ
Hence, `(("d"y)/("d"x))_("at" theta = pi/3) = sin pi/3 = sqrt(3)/2`.
APPEARS IN
RELATED QUESTIONS
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Find `"dy"/"dx"` if, y = log(log x)
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
State whether the following is True or False:
The derivative of polynomial is polynomial.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
Derivative of ex sin x w.r.t. e-x cos x is ______.
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
Differentiate `sqrt(tansqrt(x))` w.r.t. x
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.
Find `dy/dx` if, `y = e^(5x^2 - 2x + 4)`.