Advertisements
Advertisements
Question
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
Solution
y = `root(5)((3"x"^2 + 8"x" + 5)^4)`
∴ y = `(3"x"^2 + 8"x" + 5)^(4/5)`
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "d"/"dx" [(3"x"^2 + 8"x" + 5)^(4/5)]`
`= 4/5(3"x"^2 + 8"x" + 5)^(-1/5) * "d"/"dx" (3"x"^2 + 8"x" + 5)`
`= 4/5(3"x"^2 + 8"x" + 5)^(-1/5) * [3(2"x") + 8 + 0]`
∴ `"dy"/"dx" = 4/5(3"x"^2 + 8"x" + 5)^(-1/5) * (6"x" + 8)`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"` if, y = log(log x)
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
The derivative of f(x) = ax, where a is constant is x.ax-1.
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
Differentiate `sqrt(tansqrt(x))` w.r.t. x
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.
Find `dy/dx` if, `y = e^(5x^2 - 2x + 4)`.