Advertisements
Advertisements
Question
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
Solution
We know that f(x) = `1/(x - 1)` is discontinuous at x = 1
Now, for x ≠ 1,
f(f(x)) = `"f"(1/(x - 1))`
= `1/(1/(x - 1) - 1)`
= `(x - 1)/(2 - x)`.
Which is discontinuous at x = 2.
Hence, the points of discontinuity are x = 1 and x = 2.
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
State whether the following is True or False:
The derivative of polynomial is polynomial.
`d/dx(10^x) = x*10^(x - 1)`
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
y = cos (sin x)
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.