Advertisements
Advertisements
Question
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
Solution
Given that: `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`
Put x = sin θ and y = sin Φ.
∴ θ = sin–1x and Φ = sin–1y
`sqrt(1 - sin^2theta) + sqrt(1 - sin^2phi)` = a(sin θ – sin Φ)
⇒ `sqrt(cos^2theta) + sqrt(cos^2phi)` = a(sin θ – sin Φ)
⇒ cos θ + cos Φ = a(sin θ – sin Φ)
⇒ `(cos theta + cos phi)/(sin theta - sin phi)` = a
⇒ `(2 cos (theta + phi)/2 * cos (theta - phi)/2)/(2cos (theta + phi)/2 * sin (theta - phi)/2)` = a ......`[(because cos "A" + cos "B" = 2cos ("A" + "B")/2 * cos ("A" - "B")/2),(sin"A" - sin"B" = 2cos ("A" + "B")/2 * sin ("A" - "B")/2)]`
⇒ `(cos((theta - phi)/2))/(sin((theta - phi)/2))` = a
⇒ `cot((theta - phi)/2)` = a
⇒ `(theta - phi)/2 = cot^-1"a"`
⇒ θ – Φ = 2cot–1a
⇒ sin–1x – sin–1y = 2 cot–1a
Differentiating both sides w.r.t. x
`"d"/"dx" (sin^-1x) - "d"/"dx"(sin^-1x) = 2*"d"/"dx" cot^-1"a"`
⇒ `1/sqrt(1 - x^2) - 1/sqrt(1 - y^2) * "dy"/"dx"` = 0
⇒ `1/sqrt(1 - y^2) * "dy"/"dx" = 1/sqrt(1 - x^2)`
∴ `"dy"/"dx" = sqrt(1 - y^2)/sqrt(1 - x^2)`.
RELATED QUESTIONS
If y = eax. cos bx, then prove that
`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find `"dy"/"dx"` if cos (xy) = x + y
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
State whether the following is True or False:
The derivative of polynomial is polynomial.
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
y = `sec (tan sqrt(x))`
y = `cos sqrt(x)`
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.