Advertisements
Advertisements
Question
Differentiate `"e"^("4x" + 5)` with respect to 104x.
Solution
Let u = `"e"^(("4x" + 5))` and v = 104x.
u = `"e"^(("4x" + 5))`
Differentiating both sides w.r.t.x, we get
`"du"/"dx" = "e"^(("4x" + 5)) * "d"/"dx" (4"x" + 5)`
`= "e"^(("4x" + 5)) * (4 + 0)`
∴ `"du"/"dx" = 4 * "e"^(("4x" + 5)) *`
v = 104x
Differentiating both sides w.r.t.x, we get
`"dv"/"dx" = 10^"4x" * log 10 * "d"/"dx" ("4x")`
∴ `"dv"/"dx" = 10^"4x" * (log 10) (4)`
∴ `"du"/"dv" = ("du"/"dx")/("dv"/"dx") = (4 * "e"^(("4x" + 5)))/(10^"4x" * (log 10)(4))`
∴ `"du"/"dv" = ("e"^(("4x" + 5)))/(10^"4x" * (log 10)`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find the second order derivatives of the following : e2x . tan x
Find the second order derivatives of the following : e4x. cos 5x
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = log(log x)
`d/dx(10^x) = x*10^(x - 1)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
y = sin (ax+ b)
y = `sec (tan sqrt(x))`
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.