Advertisements
Advertisements
Question
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
Options
9(5x3 - 4x2 - 8x)8 (15x2 - 8x - 8)
9(5x3 - 4x2 - 8x)9 (15x2 - 8x - 8)
9(5x3 - 4x2 - 8x)8 (5x2 - 8x - 8)
9(5x3 - 4x2 - 8x)9 (15x2 - 8x - 8)
Solution
9(5x3 - 4x2 - 8x)8 (15x2 - 8x - 8)
Explanation:
y = (5x3 - 4x2 - 8x)9
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"` [(5x3 - 4x2 - 8x)9]
`= 9("5x"^3 - 4"x"^2 - 8"x")^8 * "d"/"dx" ("5x"^3 - 4"x"^2 - 8"x")`
`= 9("5x"^3 - 4"x"^2 - 8"x")^8 * [5(3"x"^2) - 4(2"x") - 8]`
∴ `"dy"/"dx" = 9("5x"^3 - 4"x"^2 - 8"x")^8 * (15"x"^2 - 8"x" - 8)`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
If y = log (cos ex), then `"dy"/"dx"` is:
y = `cos sqrt(x)`
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`