English

Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.

Sum

Solution

y = 25 + 30x  – x2.

Differentiating both sides w.r.t. x, we get

`"dy"/"dx" = "d"/"dx" (25 + 30"x" - "x"^2) = 0 + 30 - 2"x"`

∴ `"dy"/"dx" = 30 - 2"x"`

Now, by the derivative of an inverse function, the rate of change of demand (x) w.r.t. price(y) is

`"dx"/"dy" = 1/(("dy"/"dx"))`, where `"dy"/"dx" ne 0`.

i.e. `"dx"/"dy" = 1/(30 - 2"x")`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [Page 100]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q IV] 4) | Page 100

RELATED QUESTIONS

if `y = tan^2(log x^3)`, find `(dy)/(dx)`


Find `dy/dx if x + sqrt(xy) + y = 1`


Find `"dy"/"dx"` if cos (xy) = x + y


Find `"dy"/"dx"` if, y = log(log x)


Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)


Fill in the Blank

If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`

Solution: Given,

y = (6x4 – 5x3 + 2x + 3)6 

Let u = `[6x^4 - 5x^3 + square + 3]`

∴ y = `"u"^square`

∴ `("d"y)/"du"` = 6u6–1

∴ `("d"y)/"du"` = 6(  )5 

and `"du"/("d"x) = 24x^3 - 15(square) + 2`

By chain rule,

`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`

∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`


Differentiate the function from over no 15 to 20 sin (x2 + 5)


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`


Solve the following:

If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×