Advertisements
Advertisements
प्रश्न
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
उत्तर
We know that f(x) = `1/(x - 1)` is discontinuous at x = 1
Now, for x ≠ 1,
f(f(x)) = `"f"(1/(x - 1))`
= `1/(1/(x - 1) - 1)`
= `(x - 1)/(2 - x)`.
Which is discontinuous at x = 2.
Hence, the points of discontinuity are x = 1 and x = 2.
APPEARS IN
संबंधित प्रश्न
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
y = `2sqrt(cotx^2)`
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`