English

If y = exe1+x, then dddydx = ______. -

Advertisements
Advertisements

Question

If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.

Options

  • `(2x"e"^(x/(1 + x)))/(1 + x)^2`

  • `(-2x"e"^(x/(1 + x)))/(1 + x)^2`

  • `("e"^(x/(1 + x)))/(1 + x)^2`

  • `(-"e"^(x/(1 + x)))/(1 + x)^2`

MCQ
Fill in the Blanks

Solution

If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = `("e"^(x/(1 + x)))/(1 + x)^2`.

Explanation:

y = `x/"e"^(1 + x)`

∴ `("d"y)/("d"x) = "e"^(x/(1 + x)) * "d"/("d"x) (x/(1 + x))`

= `"e"^(x/(1 + x))*[((1 + x)*(1) -x*(0 + 1))/(1 + x)^2]`

= `"e"^(x/(1 + x))/(1 + x)^2`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×