Advertisements
Advertisements
Question
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
Solution
When 0 < x < `pi/4`,cos x > si x
So that cos x – sin x > 0
i.e. f(x) = cos x – sin x
⇒ f′(x) = – sin x – cos x
Hence `"f'"(pi/6) = - sin pi/6 - cos pi/6`
=` 1/2 (1 + sqrt(3))`.
APPEARS IN
RELATED QUESTIONS
If y = log (cos ex) then find `"dy"/"dx".`
Find the second order derivatives of the following : e4x. cos 5x
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
If y = x10, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
Derivative of ex sin x w.r.t. e-x cos x is ______.
`"d"/("d"x) [sin(1 - x^2)]^2` = ______.
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
If f(x) = |cos x|, find f'`((3pi)/4)`
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
If y = log (cos ex), then `"dy"/"dx"` is:
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
The differential equation of (x - a)2 + y2 = a2 is ______
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`