Advertisements
Advertisements
Question
If f(x) = |cos x|, find f'`((3pi)/4)`
Solution
When `pi/2` < x , pi, cos x < 0`
So that |cos x| = `- cos x`
i.e., f(x) = `- cos x`
⇒ f'(x) = sin x.
Hence, `"f'"((3pi)/4) = sin ((3pi)/4) = 1/sqrt(2)`
APPEARS IN
RELATED QUESTIONS
If y = log (cos ex) then find `"dy"/"dx".`
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If y = ex, then `("d"y)/("d"x)` = ex
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
y = sin (ax+ b)
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.