Advertisements
Advertisements
प्रश्न
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
उत्तर
y = `"e"^((2x + 1))`
Differentiating both sides w.r.t. x, we get
`("d"y)/("d"x) = "e"^((2x + 1))*"d"/("d"x)(2x + 1)`
∴ `("d"y)/("d"x) = "e"^((2x + 1))*(2 + 0)`
∴ `("d"y)/("d"x) = 2"e"^((2x + 1))`
Again, differentiating both sides w.r.t. x , we get
∴ `("d"^2y)/("d"x^2) = 2*"d"/("d"x)"e"^((2x + 1))`
= `2"e"^((2x + 1))*"d"/("d"x)(2x + 1)`
= `2"e"^((2x + 1))*(2 + 0)`
∴ `("d"^2y)/("d"x^2) = 4"e"^((2x + 1))`
संबंधित प्रश्न
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if cos (xy) = x + y
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find `"dy"/"dx"` if, y = log(log x)
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
State whether the following is True or False:
The derivative of polynomial is polynomial.
`d/dx(10^x) = x*10^(x - 1)`
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
`"d"/("d"x) [sin(1 - x^2)]^2` = ______.
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
If y = log (cos ex), then `"dy"/"dx"` is:
y = sin (ax+ b)
Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
If y = 2x2 + a2 + 22 then `dy/dx` = ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
The differential equation of (x - a)2 + y2 = a2 is ______
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`