हिंदी

Find the second order derivatives of the following : e4x . cos 5x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the second order derivatives of the following : e4x. cos 5x

योग

उत्तर

Let y = e4x. cos 5x

Then `"dy"/"dx" = "d"/"dx"(e^(4x).cos5x)`

= `e^(4x)."d"/"dx"(cos5x) + cos5x."d"/"dx"(e^(4x))`

= `e^(4x).(-sin5x)."d"/"dx"(5x) + cos5x xx e^(4x)."d"/"dx"(4x)`

= – e4x . sin 5x × 5 + e4x cos 5x × 4

= e4x (4 cos 5x – 5 sin 5x)

and `(d^2y)/(dx^2) = "d"/"dx"[e^(4x)(4cos5x - 5sin5x)]`

`= e^(4x)"d"/"dx"(4cos5x - 5sin5x) + (4cos5x - 5sin5x)."d"/"dx"(e^(4x))`

`= e^(4x)[4 (- sin 5x)."d"/"dx"(5x) - 5cos5x."d"/"dx"(5x)] + (4cos5x - 5sin5x) xx e^(4x)."d"/"dx"(4x)`

= e4x [– 4 sin 5x × 5 – 5 cos 5x × 5] + (4 cos 5x – 5 sin 5x) e4x × 4

= e4x(– 20 sin 5x – 25 cos 5x + 16 cos 5x – 20 sin 5x)

= e4x (– 9 cos 5x – 40 sin 5x)

= – e4x (9 cos 5x + 40 sin 5x)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Differentiation - Exercise 1.5 [पृष्ठ ६०]

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


if `y = tan^2(log x^3)`, find `(dy)/(dx)`


Solve the following differential equation: 
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1


Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`


Find `dy/dx if x + sqrt(xy) + y = 1`


Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`


Find `"dy"/"dx"` if cos (xy) = x + y


Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`


Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`


Choose the correct alternative.

If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =


Fill in the Blank

If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________


The derivative of f(x) = ax, where a is constant is x.ax-1.


`d/dx(10^x) = x*10^(x - 1)`


Solve the following:

If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"` 


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______


If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?


Choose the correct alternative:

If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?


If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`

Solution: Given,

y = (6x4 – 5x3 + 2x + 3)6 

Let u = `[6x^4 - 5x^3 + square + 3]`

∴ y = `"u"^square`

∴ `("d"y)/"du"` = 6u6–1

∴ `("d"y)/"du"` = 6(  )5 

and `"du"/("d"x) = 24x^3 - 15(square) + 2`

By chain rule,

`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`

∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`


If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b))  tan  x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______ 


If y = (sin x2)2,  then `("d"y)/("d"x)` is equal to ______.


If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.


Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]


Differentiate `sqrt(tansqrt(x))` w.r.t. x


Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


If f(x) = |cos x|, find f'`((3pi)/4)`


If f(x) = |cos x – sinx|, find `"f'"(pi/6)`


If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)` 


Differentiate the function from over no 15 to 20 sin (x2 + 5)


y = sin (ax+ b)


y = `sec (tan sqrt(x))`


y = `2sqrt(cotx^2)`


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.


Let f(x) = x | x | and g(x) = sin x

Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.

Statement II gof is twice differentiable at x = 0.


If y = 2x2 + a2 + 22 then `dy/dx` = ______.


If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.


Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Solve the following:

If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`


The differential equation of (x - a)2 + y2 = a2 is ______ 


If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find the rate of change of demand (x) of acommodity with respect to its price (y) if

`y = 12 + 10x + 25x^2`


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`


Solve the following.

If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`


If `y = root{5}{(3x^2 + 8x + 5)^4}, "find"  dy/dx`.


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×