Advertisements
Advertisements
प्रश्न
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
उत्तर
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = bbunderline"y"/"x"`
Explanation:
xm.yn = `("x + y")^("m + n")`
log(xm.yn) = log`("x + y")^("m + n")`
mlogx + nlogy = (m + n) log(x + y) ...`[(log(ab)=loga+logb),(logm^n=nlogm)]`
Diff. w.r.t.x.
`mxx1/x+nxx1/y.dy/dx=(m+n)1/(x+y)xx(1+dy/dx)`
`m/x+n/y.dy/dx=(m+n)/(x+y)+(m+n)/(x+y)dy/dx`
`n/ydy/dx-(m+n)/(x+y)dy/dx=(m+n)/(x+y)-m/x`
`dy/dx(n/y-(m+n)/(x+y))=(m+n)/(x+y)-m/x`
`dy/dx[(nx+ny-my-ny)/(y(x+y))]=(mx+mx-mx-my)/((x+y)x)`
`dy/dx=(nx-my)/x xxy/(nx-my)`
`dy/dx=y/x`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : e4x. cos 5x
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
If y = x2, then `("d"^2y)/("d"x^2)` is ______
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
If y = 2x2 + a2 + 22 then `dy/dx` = ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`