Advertisements
Advertisements
प्रश्न
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
उत्तर
y = [log(log(logx))]2
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "d"/"dx" [log(log(log "x"))]^2`
`= 2[log(log(log "x"))] xx "d"/"dx" [log(log(log "x"))]`
`= 2[log(log(log "x"))] xx 1/(log(log "x")) xx "d"/"dx" [log(log "x")]`
`= 2[log(log(log "x"))] xx 1/(log(log "x")) xx 1/(log "x") xx "d"/"dx" (log "x")`
`= 2[log(log(log "x"))] xx 1/(log(log "x")) xx 1/(log "x") xx 1/"x"`
∴ `"dy"/"dx" = (2[log(log(log "x"))])/("x"(log "x")(log (log "x")))`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Differentiate log (1 + x2) with respect to ax.
If u = 5x and v = log x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
`int 1/(4x^2 - 1) dx` = ______.
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`