हिंदी

Find dydxif, y = (x)x+(ax). - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `dy/dx`if, y = `(x)^x + (a^x)`.

योग

उत्तर

y = `(x)^x + (a^x)`

Let u = (x)x and v = (ax)

∴ y = u + v

Differentiating both sides w.r.t.x, we get

`dy/dx = (du)/dx + (dv)/dx`     ....(i)

Now u = `(x)^x`

Taking logarithm of both sides, we get

log u = log `(x)^x`

∴ log u = x . log x

Differentiating both sides w.r.t.x, we get

`1/u (du)/dx = x * d/dx (log x) + log x * d/dx(x)`

`= x * 1/x + log x * (1)`

∴ `1/u (du)/dx = 1 + log x`

∴ `(du)/dx = u(1 + log x)`

∴ `(du)/dx = (x)^x` (1 + log x)        ....(ii)

v = ax

Differentiating both sides w.r.t.x, we get

`(dv)/dx = a^x* log a`       ....(iii)

Substituting (ii) and (iii) in (i), we get

`dy/dx = x^x(1 + log x) + a^x* log a`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - EXERCISE 3.3 [पृष्ठ ९४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
EXERCISE 3.3 | Q 3. 2) | पृष्ठ ९४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×