Advertisements
Advertisements
प्रश्न
Find `dy/dx`if, y = `(x)^x + (a^x)`.
उत्तर
y = `(x)^x + (a^x)`
Let u = (x)x and v = (ax)
∴ y = u + v
Differentiating both sides w.r.t.x, we get
`dy/dx = (du)/dx + (dv)/dx` ....(i)
Now u = `(x)^x`
Taking logarithm of both sides, we get
log u = log `(x)^x`
∴ log u = x . log x
Differentiating both sides w.r.t.x, we get
`1/u (du)/dx = x * d/dx (log x) + log x * d/dx(x)`
`= x * 1/x + log x * (1)`
∴ `1/u (du)/dx = 1 + log x`
∴ `(du)/dx = u(1 + log x)`
∴ `(du)/dx = (x)^x` (1 + log x) ....(ii)
v = ax
Differentiating both sides w.r.t.x, we get
`(dv)/dx = a^x* log a` ....(iii)
Substituting (ii) and (iii) in (i), we get
`dy/dx = x^x(1 + log x) + a^x* log a`
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
The derivative of ax is ax log a.
Differentiate log (1 + x2) with respect to ax.
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If u = 5x and v = log x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if xy = log(xy)
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
If y = x . log x then `dy/dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`