English

Find dydxif, y = (x)x+(ax). - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `dy/dx`if, y = `(x)^x + (a^x)`.

Sum

Solution

y = `(x)^x + (a^x)`

Let u = (x)x and v = (ax)

∴ y = u + v

Differentiating both sides w.r.t.x, we get

`dy/dx = (du)/dx + (dv)/dx`     ....(i)

Now u = `(x)^x`

Taking logarithm of both sides, we get

log u = log `(x)^x`

∴ log u = x . log x

Differentiating both sides w.r.t.x, we get

`1/u (du)/dx = x * d/dx (log x) + log x * d/dx(x)`

`= x * 1/x + log x * (1)`

∴ `1/u (du)/dx = 1 + log x`

∴ `(du)/dx = u(1 + log x)`

∴ `(du)/dx = (x)^x` (1 + log x)        ....(ii)

v = ax

Differentiating both sides w.r.t.x, we get

`(dv)/dx = a^x* log a`       ....(iii)

Substituting (ii) and (iii) in (i), we get

`dy/dx = x^x(1 + log x) + a^x* log a`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Chapter 3: Differentiation - EXERCISE 3.3 [Page 94]

RELATED QUESTIONS

Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`


Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`


Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`


Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`


If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?` 


If y = x log x, then `(d^2y)/dx^2`= _____.


Fill in the blank.

If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____


State whether the following is True or False:

The derivative of `log_ax`, where a is constant is `1/(x.loga)`.


The derivative of ax is ax log a.


Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`


Choose the correct alternative:

If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?


If xy = 2x – y, then `("d"y)/("d"x)` = ______


State whether the following statement is True or False:

If y = log(log x), then `("d"y)/("d"x)` = logx


State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  


Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x 


Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


If y = (log x)2 the `dy/dx` = ______.


Find`dy/dx if, y = x^(e^x)`


Find `dy/dx  "if",y=x^(e^x) `


Find `dy/dx,"if"  y=x^x+(logx)^x`


Find `dy/(dx)` if, `y = x^(e^x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×