Advertisements
Advertisements
Question
Find `dy/dx`if, y = `(x)^x + (a^x)`.
Solution
y = `(x)^x + (a^x)`
Let u = (x)x and v = (ax)
∴ y = u + v
Differentiating both sides w.r.t.x, we get
`dy/dx = (du)/dx + (dv)/dx` ....(i)
Now u = `(x)^x`
Taking logarithm of both sides, we get
log u = log `(x)^x`
∴ log u = x . log x
Differentiating both sides w.r.t.x, we get
`1/u (du)/dx = x * d/dx (log x) + log x * d/dx(x)`
`= x * 1/x + log x * (1)`
∴ `1/u (du)/dx = 1 + log x`
∴ `(du)/dx = u(1 + log x)`
∴ `(du)/dx = (x)^x` (1 + log x) ....(ii)
v = ax
Differentiating both sides w.r.t.x, we get
`(dv)/dx = a^x* log a` ....(iii)
Substituting (ii) and (iii) in (i), we get
`dy/dx = x^x(1 + log x) + a^x* log a`
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
The derivative of ax is ax log a.
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If xy = 2x – y, then `("d"y)/("d"x)` = ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
If y = (log x)2 the `dy/dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/(dx)` if, `y = x^(e^x)`