Advertisements
Advertisements
Question
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
Options
`(2 - "x")/"x"`
`("x" - 2)/"x"`
`("e - x")/"ex"`
`("x - e")/"ex"`
Solution
`bb(("x" - 2)/"x")`
Explanation:
y = log `("e"^"x"/"x"^2)`
= log (ex) − log (x2)
= x log e − log x2
y = x − log x2 ...(∵ log e = 1)
Differentiating w.r.t. 'x', we get
`"dy"/"dx"= 1 - 1/("x"^2)."d"/"dx" ("x"^2)`
= `1 - (2"x")/("x"^2)`
= `1 - 2/"x"`
= `("x"- 2)/"x"`
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Differentiate log (1 + x2) with respect to ax.
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx if, y = x^(e^x)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`