Advertisements
Advertisements
Question
Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0
Solution
‘y’ is a differentiable function of ‘x’.
Let there be a small increment δx in the value of ‘x’.
Correspondingly, there should be a small increment δy in the value of ‘y’.
As δx → 0, δy → 0
Consider, `(deltax)/(deltay) xx (deltay)/(deltax)` = 1
∴ `(deltax)/(deltay) = 1/((deltay)/(deltax)), (deltay)/(deltax)` ≠ 0
Taking `lim_(deltax -> 0)` on both sides, we get
`lim_(deltax -> 0)((deltax)/(deltay)) = 1/(lim_(deltax -> 0)((deltay)/(deltax))`
Since ‘y’ is a differentiable function of ‘x’,
`lim_(deltax -> 0) ((deltay)/(deltax)) = ("d"y)/("d"x)` and `("d"y)/("d"x)` ≠ 0
∴ `lim_(deltax -> 0)((deltax)/(deltay)) = 1/(("d"y)/("d"x))`
As δx → 0, δy → 0
`lim_(deltax -> 0) ((deltay)/(deltax)) = 1/(("d"y)/("d"x))` .......(i)
Here, R.H.S. of (i) exist and are finite.
Hence, limits on L.H.S. of (i) also should exist and be finite.
∴ `lim_(deltax -> 0)((deltax)/(deltay)) = ("d"y)/("d"x)` exists and is finite.
∴ `("d"x)/("d"y) = 1/((("d"y)/("d"x))), ("d"y)/("d"x)` ≠ 0
Alternate Proof:
We know that f–1[f(x)] = x .......[Identity function]
Taking derivative on both the sides, we get
`"d"/("d"x) ["f"^-1["f"(x)]] = "d"/("d"x)(x)`
∴ `("f"^-1)"'"["f"(x)]"d"/("d"x)["f"(x)]` = 1
∴ (f–1)′[f(x)] f′(x) = 1
∴ (f–1)′[f(x)] = `1/("f""'"(x))` .......(i)
So, if y = f(x) is a differentiable function of x and x = f–1(y) exists and is differentiable then
(f–1)′[f(x)] = (f–1)′(y) = `("d"x)/("d"y)` and f'(x) = `("d"y)/("d"x)`
∴ Equation (i) becomes
`("d"x)/("d"y) = 1/(("d"y)/("d"x))` where `("d"y)/("d"x)` ≠
APPEARS IN
RELATED QUESTIONS
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
`d/dx(10^x) = x*10^(x - 1)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
Differentiate `"e"^("4x" + 5)` with respect to 104x.
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
If y = x2, then `("d"^2y)/("d"x^2)` is ______
y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`
Solution: Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = `[6x^4 - 5x^3 + square + 3]`
∴ y = `"u"^square`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6( )5
and `"du"/("d"x) = 24x^3 - 15(square) + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
If y = log (cos ex), then `"dy"/"dx"` is:
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = cos (sin x)
y = `2sqrt(cotx^2)`
y = `cos sqrt(x)`
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
The differential equation of (x - a)2 + y2 = a2 is ______
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:
`dy/dx = dy/(du) xx (du)/dx`
Hence, find `d/dx[log(x^5 + 4)]`.
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
If y = `root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`