Advertisements
Advertisements
प्रश्न
Differentiate log (1 + x2) with respect to ax.
उत्तर
Let u = log (1 + x2) and v = ax
u = log (1 + x2)
Differentiating both sides w.r.t.x, we get
`"du"/"dx" = 1/(1 + "x"^2) * "d"/"dx" (1 + "x"^2)`
`= 1/(1 + "x"^2) * (0 + "2x")`
∴ `"du"/"dx" = "2x"/(1 + "x"^2)`
v = ax
Differentiating both sides w.r.t.x, we get
`"dv"/"dx" = "a"^"x" * log "a"`
∴ `"du"/"dv" = ("du"/"dx")/("dv"/"dx") = ("2x"/(1 + "x"^2))/("a"^"x" * log "a")`
∴ `"du"/"dv" = "2x"/("a"^"x" * log "a" * (1 + "x"^2))`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
The derivative of ax is ax log a.
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
`int 1/(4x^2 - 1) dx` = ______.
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`