Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
उत्तर
y = [log(log(logx))]2
Differentiating both sides w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x)[log(log(logx))]^2`
= `2[log(log(logx))] xx "d"/("d"x)[log(log(logx))]`
= `2[log(log(logx))] xx 1/(log(logx)) xx "d"/("d"x)[log(logx)]`
= `2[log(log(logx))] xx 1/(log(logx)) xx 1/logx xx "d"/("d"x)(log x)`
= `2[log(log(logx))] xx 1/(log(logx)) xx 1/logx xx 1/x`
∴ `("d"y)/("d"x) = (2[log(log(logx))])/(x(logx)(log(logx)))`
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
If y = x log x, then `(d^2y)/dx^2`= _____.
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If u = ex and v = loge x, then `("du")/("dv")` is ______
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`