मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find dydx, if y = [log(log(logx))]2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `("d"y)/("d"x)`, if y = [log(log(logx))]2 

बेरीज

उत्तर

y = [log(log(logx))]2  

Differentiating both sides w.r.t. x, we get

`("d"y)/("d"x) = "d"/("d"x)[log(log(logx))]^2`

= `2[log(log(logx))] xx "d"/("d"x)[log(log(logx))]`

= `2[log(log(logx))] xx 1/(log(logx)) xx "d"/("d"x)[log(logx)]`

= `2[log(log(logx))] xx 1/(log(logx)) xx 1/logx xx "d"/("d"x)(log x)`

= `2[log(log(logx))] xx 1/(log(logx)) xx 1/logx xx 1/x`

∴ `("d"y)/("d"x) = (2[log(log(logx))])/(x(logx)(log(logx)))`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.3: Differentiation - Q.4

संबंधित प्रश्‍न

Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`


Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`


Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`


Find `"dy"/"dx"`if, y = (2x + 5)x 


Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`


Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`


Find `dy/dx`if, y = `(x)^x + (a^x)`.


If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?` 


Fill in the Blank

If 0 = log(xy) + a, then `"dy"/"dx" =  (-"y")/square`


Fill in the blank.

If x = t log t and y = tt, then `"dy"/"dx"` = ____


If y = x log x, then `(d^2y)/dx^2`= _____.


State whether the following is True or False:

The derivative of `log_ax`, where a is constant is `1/(x.loga)`.


State whether the following is True or False:

If y = log x, then `"dy"/"dx" = 1/"x"`


Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`


Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`


If u = ex and v = loge x, then `("du")/("dv")` is ______


Find `(dy)/(dx)`, if xy = yx 


Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x 


Find `("d"y)/("d"x)`, if y = `x^(x^x)`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


If y = (log x)2 the `dy/dx` = ______.


Find `dy/dx  "if",  y = x^(e^x)`


Find `dy/dx, "if"  y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`


Find `dy/dx,"if"  y=x^x+(logx)^x`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×