Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
उत्तर
y = `"x"^"x" + ("7x" - 1)^"x"`
Let u = xx and v = `("7x" - 1)^"x"`
∴ y = u + v
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "du"/"dx" + "dv"/"dx"` ....(i)
Now, u = xx
Taking logarithm of both sides, we get
log u = log(xx)
∴ log u = x. log x
Differentiating both sides w.r.t.x, we get
`1/"u" * "du"/"dx" = "x" * "d"/"dx" (log "x") + log "x" * "d"/"dx"`(x)
`= "x" * 1/"x" + log "x" *` (1)
∴ `1/"u" * "du"/"dx"` = 1 + log x
∴ `"du"/"dx"` = u(1 + log x)
∴ `"d"/"dx" ("x"^"x") = "x"^"x"`(1 + log x) ....(ii)
Also, v = (7x – 1)x
Taking logarithm of both sides, we get
log v = log(7x - 1)x
∴ log v = x. log(7x – 1)
Differentiating both sides w.r.t.x, we get
`1/"v" * "dv"/"dx" = "x" * "d"/"dx" log ("7x" - 1) + log ("7x" - 1) * "d"/"dx"`(x)
`= "x" * 1/("7x" - 1) * "d"/"dx" (7"x" - 1) + log (7"x" - 1) * (1)`
∴ `1/"v" * "dv"/"dx" = "x"/(7"x" - 1) (7 - 0) + log (7"x" - 1)`
∴ `"dv"/"dx" = "v"["7x"/(7"x" - 1) + log(7"x" - 1)]`
∴`"dv"/"dx" = (7"x" - 1)^"x" ["7x"/(7"x" - 1) + log(7"x" - 1)]` ....(iii)
Substituting (ii) and (iii) in (i), we get
`"dy"/"dx" = "x"^"x" (1 + log "x") + (7"x" - 1)^"x" [log(7"x" - 1) + "7x"/(7"x" - 1)]`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = elogx then `dy/dx` = ?
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If u = ex and v = loge x, then `("du")/("dv")` is ______
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
`int 1/(4x^2 - 1) dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx if, y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`