Advertisements
Advertisements
प्रश्न
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
उत्तर
x = t.logt ......(i)
y = tt ......(ii)
Taking logarithm of both sides, we get
log y = log tt
∴ log y = t.logt
∴ log y = x ......[From (i)]
Differentiating both sides w.r.t. x, we get
`1/y*("d"y)/("d"x)` = 1
∴ `("d"y)/("d"x)` = y
∴ `("d"y)/("d"x)` = tt ......[From (ii)]
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = (2x + 5)x
If y = x log x, then `(d^2y)/dx^2`= _____.
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
The derivative of ax is ax log a.
Differentiate log (1 + x2) with respect to ax.
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
If y = x . log x then `dy/dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx if, y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`