मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find dydxif, y = 3x-1(2x + 3)(5-x)23 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`

बेरीज

उत्तर

y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`

`= ("3x" - 1)^(1/3)/(("2x" + 3)^(1/3)*(5 - "x")^(2/3))`

Taking logarithm of both sides, we get

log y = `log[("3x" - 1)^(1/3)/(("2x" + 3)^(1/3)*(5 - "x")^(2/3))]`

`= log ("3x" - 1)^(1/3) - [log ("2x" + 3)^(1/3) + log (5 - "x")^(2/3)]`

`= 1/3 log ("3x" - 1) - [1/3 log ("2x" + 3) + 2/3 log (5 - "x")]`

Differentiating both sides w.r.t. x, we get

`1/"y" "dy"/"dx" = 1/3 * "d"/"dx" [log ("3x" - 1)] - 1/3 * "d"/"dx" [log (2"x" + 3)] - 2/3 * "d"/"dx" [log (5 - "x")]`

`= 1/3 * 1/("3x" - 1)*"d"/"dx" ("3x" - 1) - 1/3 * 1/("2x + 3") * "d"/"dx" ("2x" + 3) - 2/3 * 1/("5 - x") * "d"/"dx" (5 - "x")`

`= 1/(3(3"x" - 1)) xx 3 - 1/(3(2"x" + 3)) xx 2 - 2/(3(5 - "x")) xx -1`

∴ `1/"y" "dy"/"dx" = 1/("3x" - 1) - 2/(3("2x" + 3)) + 2/(3(5 - "x"))`

∴ `"dy"/"dx" = "y"/3 [3/("3x" - 1) - 2/("2x" + 3) + 2/(5 - "x")]`

∴ `"dy"/"dx" = 1/3 * root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2)) [3/("3x" - 1) - 2/("2x" + 3) + 2/(5 - "x")]` 

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - EXERCISE 3.3 [पृष्ठ ९४]

APPEARS IN

संबंधित प्रश्‍न

Find `dy/dx`if, y = `(x)^x + (a^x)`.


Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`


Fill in the blank.

If y = y = [log (x)]2  then `("d"^2"y")/"dx"^2 =` _____.


State whether the following is True or False:

If y = log x, then `"dy"/"dx" = 1/"x"`


Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`


Choose the correct alternative:

If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?


State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  


Find `(dy)/(dx)`, if xy = yx 


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x 


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


If y = x . log x then `dy/dx` = ______.


If y = (log x)2 the `dy/dx` = ______.


Find `dy/dx  "if",y=x^(e^x) `


FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`


Find `dy/dx  "if",  y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/(dx)` if, `y = x^(e^x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×