Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False:
If x = 2at, y = 2a, where t is parameter, then `("d"y)/("d"x) = 1/"t"`
पर्याय
True
False
उत्तर
False
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`, if x = at2, y = 2at
Find `"dy"/"dx"`, if x = 2at2 , y = at4
Find `"dy"/"dx"`, if x = e3t, y = `"e"^((4"t" + 5))`
Find `"dy"/"dx"`, if x = `("u" + 1/"u")^2, "y" = (2)^(("u" + 1/"u"))`
Solve the following.
If x = `"a"(1 - 1/"t"), "y" = "a"(1 + 1/"t")`, then show that `"dy"/"dx" = - 1`
If x = `(4t)/(1 + t^2), y = 3((1 - t^2)/(1 + t^2))` then show that `dy/dx = (-9x)/(4y)`.
If x = t . log t, y = tt, then show that `"dy"/"dx" - "y" = 0`
Choose the correct alternative.
If x = 2at2 , y = 4at, then `"dy"/"dx" = ?`
If x sin(a + y) + sin a cos(a + y) = 0 then show that `("d"y)/("d"x) = (sin^2("a" + y))/(sin"a")`
If x = `"a"("t" - 1/"t")`, y = `"a"("t" + 1/"t")`, where t be the parameter, then `("d"y)/("d"x)` = ?
Find `("d"y)/("d"x)`, if x = em, y = `"e"^(sqrt("m"))`
Solution: Given, x = em and y = `"e"^(sqrt("m"))`
Now, y = `"e"^(sqrt("m"))`
Diff.w.r.to m,
`("d"y)/"dm" = "e"^(sqrt("m"))("d"square)/"dm"`
∴ `("d"y)/"dm" = "e"^(sqrt("m"))*1/(2sqrt("m"))` .....(i)
Now, x = em
Diff.w.r.to m,
`("d"x)/"dm" = square` .....(ii)
Now, `("d"y)/("d"x) = (("d"y)/("d"m))/square`
∴ `("d"y)/("d"x) = (("e"sqrt("m"))/square)/("e"^"m")`
∴ `("d"y)/("d"x) = ("e"^(sqrt("m")))/(2sqrt("m")*"e"^("m")`
Find `dy/dx` if, `x = e^(3t) , y = e^sqrtt`
Find `dy/dx` if, x = e3t, y = `e^((4t + 5))`
If x = f(t) and y = g(t) are differentiable functions of t, then prove that:
`dy/dx = ((dy//dt))/((dx//dt))`, if `dx/dt ≠ 0`
Hence, find `dy/dx` if x = a cot θ, y = b cosec θ.
Suppose y = f(x) is differentiable function of x and y is one-one onto, `dy/dx ≠ 0`. Also, if x = f–1(y) is differentiable, then prove that `dx/dy = 1/((dy/dx))`, where `dy/dx ≠ 0`
Hence, find `d/dx(tan^-1x)`.
Find `dy/dx` if, x = e3t, y = `e^((4t+5))`
Find `dy/dx` if,
`x = e ^(3^t), y = e^((4t + 5))`
Find `dy/dx` if x= `e^(3t)`, y =`e^((4t+5))`
Find `dy/dx if, x= e^(3t)"," y = e^((4t+5))`
Find `dy/dx` if, x = `e^(3t)`, y = `e^((4t + 5))`.