Advertisements
Advertisements
प्रश्न
If u = 5x and v = log x, then `("du")/("dv")` is ______
उत्तर
x.5x log 5
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = elogx then `dy/dx` = ?
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Differentiate log (1 + x2) with respect to ax.
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`