Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if xy = log(xy)
उत्तर
xy = log(xy)
Differentiating both sides w.r.t. x, we get
`x*("d"y)/("d"x) + y*"d"/("d"x)(x) = 1/(xy)*"d"/("d"x)(xy)`
∴ `x*("d"y)/("d"x) + y*1 = 1/(xy)[x*("d"y)/("d"x) + y*"d"/("d"x)(x)]`
∴ `x*("d"y)/("d"x) + y = 1/(xy)(x("d"y)/("d"x) + y*1)`
∴ `x*("d"y)/("d"x) + y = 1/y*("d"y)/("d"x) + 1/x`
∴ `(x - 1/y)("d"y)/("d"x) = 1/x - y`
∴ `-((1 - xy)/y)("d"y)/("d"x) = ((1 - xy)/x)`
∴ `("d"y)/("d"x) = -((1 - xy)/x) xx (y/(1 - xy))`
∴ `("d"y)/("d"x) = (-y)/x`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Differentiate log (1 + x2) with respect to ax.
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
`int 1/(4x^2 - 1) dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.