Advertisements
Advertisements
प्रश्न
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
उत्तर
x2ydx – (x3 – y3)dy = 0
∴ x2ydx = (x3 + y3 )dy
∴
Put y = tx ...(ii)
Differentiating w.r.t x,
∴
Substituting (iii) and (ii) in (i), we get
∴
∴
∴
∴
∴
∴
Integrating on both sides. we get
∴
∴
∴
∴
∴
∴
∴ log |y| + log |c| =
Where [–log |c1| = log |c|]
∴ log |yc| =
This is the general solution.
APPEARS IN
संबंधित प्रश्न
Find
Find
If y = elogx then
If y = log
If y = x log x, then
Fill in the blank.
If y = y = [log (x)]2 then
Fill in the blank.
If y =
State whether the following is True or False:
The derivative of
State whether the following is True or False:
If y = e2, then
Find
Differentiate log (1 + x2) with respect to ax.
Choose the correct alternative:
If y = (x )x + (10)x, then
If xy = 2x – y, then
If u = ex and v = loge x, then
State whether the following statement is True or False:
If y = log(log x), then
Find
Find
Find
If y = (log x)2 the
FInd
Find
Find
Find
Find
Find
Find