Advertisements
Advertisements
प्रश्न
Solve by using matrix inversion method:
x - y + z = 2, 2x - y = 0, 2y - z = 1
उत्तर
The given equations can be written in matrix form as
`[(1,-1,1),(2,-1,0),(0,2,-1)] [(x),(y),(z)] = [(2),(0),(1)] => "AX" = "B"`
Where A = `[(1,-1,1),(2,-1,0),(0,2,-1)]`, X = `[(x),(y),(z)]`, B = `[(2),(0),(1)]`
|A| = `[(1,-1,1),(2,-1,0),(0,2,-1)]`
`= 1|(-1,0),(2,-1)| + 1|(2,0),(0,-1)| + 1|(2,-1),(0,2)|`
= 1(1 - 0) + 1(- 2 - 0) + 1(4 - 0)
= 1 - 2 + 4 = 3 ≠ 0
∴ A-1 exists.
adj A = `[(+|(-1,0),(2,-1)|, -|(2,0),(0,-1)|, +|(2,-1),(0,2)|),(-|(-1,1),(2,-1)|, +|(1,1),(0,-1)|, -|(1,-1),(0,2)|),(+|(-1,1),(-1,0)|, -|(1,1),(2,0)|, +|(1,-1),(2,-1)|)]^"T"`
`= [((1 - 0),-(-2-0),+(4-0)),(-(1-2),+(-1-0),-(2-0)),(+(0+1),-(0-2),+(-1+2))]^"T"`
`= [(1,2,4),(1,-1,-2),(1,2,1)]^"T" = [(1,1,1),(2,-1,2),(4,-2,1)]`
∴ A-1 = `1/|"A"|`adj A
`= 1/3 [(1,1,1),(2,-1,2),(4,-2,1)]`
Now X = `"A"^-1"B"`
`[(x),(y),(z)] = 1/3[(1,1,1),(2,-1,2),(4,-2,1)] [(2),(0),(1)]`
`[(x),(y),(z)] = 1/3[(2+0+1),(4+0+2),(8+0+1)]`
`[(x),(y),(z)] = 1/3[(3),(6),(9)]`
`[(x),(y),(z)] = [(1),(2),(3)]`
∴ x = 1, y = 2, z = 3
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix.
`[(1,2),(2,-1)]`
Choose the correct answer from the given alternatives in the following question:
The inverse of a symmetric matrix is
Fill in the blank :
If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).
Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`
State whether the following statement is True or False:
Inverse of `[(2, 0),(0, 3)]` is `[(1/2, 0),(0, 1/3)]`
If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.
Find the inverse of the following matrix:
`[(3,1),(-1,3)]`
If A and B non-singular matrix then, which of the following is incorrect?
If A is a solution of x2 - 4x + 3 = 0 and `A=[[2,-1],[-1,2]],` then A-1 equals ______.
If the inverse of the matrix A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]` is `1/9 [(7, 4, -1), (5, -1, -2), (3, 3, a)]`, then a is equal to ______