मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता ११

If A = [133143134] then verify that A(adj A) = |A| I and also find A-1. - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.

बेरीज

उत्तर

Given A = `[(1,3,3),(1,4,3),(1,3,4)]`

|A| = `|(1,3,3),(1,4,3),(1,3,4)|`

`= 1|(4,3),(3,4)| - 3|(1,3),(1,4)| + 3|(1,4),(1,3)|`

= 1[16 – 9] – 3[4 – 3] + 3[3 – 4]

= 1(7) – 3(1) + 3(-1)

= 7 – 3 – 3

= 1

Cofactor [Aij] = `[(7,-1,-1),(-|(3,3),(3,4)|,|(1,3),(1,4)|,-|(1,3),(1,3)|),(|(3,3),(4,3)|,-|(1,3),(1,3)|,|(1,3),(1,4)|)]`

`= [(7,-1,-1),(-(12-9),(4-3),0),((9-12),0,(4-3))]`

`= [(7,-1,-1),(-3,1,0),(-3,0,1)]`

adj A = [Aij]T = `[(7,-3,-3),(-1,1,0),(-1,0,1)]`

Now A(adj A) = `[(1,3,3),(1,4,3),(1,3,4)][(7,-3,-3),(-1,1,0),(-1,0,1)]`

`= [(7-3-3,-3+3+0,-3+0+3),(7-4-3,-3+4,-3+0+3),(7-3-4,-3+3+0,-3+0+4)]`

`= [(1,0,0),(0,1,0),(0,0,1)]`   ....(1)

|A| I = `1[(1,0,0),(0,1,0),(0,0,1)] = [(1,0,0),(0,1,0),(0,0,1)]`   .....(2)

`"A"^-1 = 1/|"A"|` adj A

`= 1/1 [(7,-3,-3),(-1,1,0),(-1,0,1)] = [(7,-3,-3),(-1,1,0),(-1,0,1)]`

From (1) and (2),

A(Adj A) = |A| I

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Matrices and Determinants - Exercise 1.2 [पृष्ठ १२]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 11 TN Board
पाठ 1 Matrices and Determinants
Exercise 1.2 | Q 2. | पृष्ठ १२

संबंधित प्रश्‍न

Find the inverse of the matrix `[(1      2     3),(1    1     5),(2    4     7)]` by adjoint method


State whether the following is True or False :

A(adj. A) = |A| I, where I is the unit matrix.


The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.


A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1 


Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`


Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

C1 → C1 + C3

`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`

C3 → C3 + C1 

`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`

C1 → C1 – 5C2, C3 → C3 – 5C2

`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`

C1 → C1 – 2C3, C2 → C2 – C

`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`

B−1 =  `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`

`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`


If A = `|(1,1,1),(3,4,7),(1,-1,1)|` verify that A(adj A) = (adj A)(A) = |A|I3.


If a 3 × 3 matrix A has its inverse equal to A, then A2 = ______ 


If A = `[(5, -4), (7, -5)]`, then 3A-1 =  ______ 


Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×