मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the inverse of the following matrix (if they exist): (211-1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the inverse of the following matrix (if they exist):

`((2,1),(1,-1))`

बेरीज

उत्तर

Let A = `((2,1),(1,-1))`

∴ |A| = `|(2,1),(1,-1)| = - 2 - 1 = - 3 ≠ 0`

∴ A-1 exists.

Consider AA-1 = I

∴ `((2,1),(1,-1)) "A"^-1 = ((1,0),(0,1))`

By R1 ↔ R2, we get,

`((1,-1),(2,1)) "A"^-1 = ((0,1),(1,0))`

By R2 - 2R1, we get,

`((1,-1),(0,3)) "A"^-1 = ((0,1),(1,-2))`

By `(1/3) "R"_2`, we get,

`((1,-1),(0,1)) "A"^-1 = ((0,1),(1/3,-2/3))`

By R1 + R2, we get,

`((1,0),(0,1)) "A"^-1 = ((1/3,1/3),(1/3,-2/3))`

∴ A-1 = `1/3((1,1),(1,-2))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Matrics - Miscellaneous exercise 2 (A) [पृष्ठ ५३]

APPEARS IN

संबंधित प्रश्‍न

Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.


Find the inverse of the following matrix.

`[(2, -3),(-1, 2)]`


Find the inverse of `[(1,2,3),(1,1,5),(2,4,7)]` by the adjoint method.


Choose the correct answer from the given alternatives in the following question:

If A = `[(2,-4),(3,1)]`, then the adjoint of matrix A is


Choose the correct answer from the given alternatives in the following question:

For a 2 × 2 matrix A, if A(adj A) = `[(10,0),(0,10)]`, then determinant A equals


Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.


Find matrix X, if AX = B, where A = `[(1, 2, 3),(-1, 1, 2),(1, 2, 4)] "and B" = [(1),(2),(3)]`.


If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB = 


Fill in the blank :

(AT)T = _______


Fill in the blank :

If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`


State whether the following is True or False :

A(adj. A) = |A| I, where I is the unit matrix.


Check whether the following matrices are invertible or not:

`[(1, 2, 3),(2, 4, 5),(2, 4, 6)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(1, -1),(2, 3)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 1),(7, 4)]`


The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =


If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______


If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______


If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.


If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1 


Choose the correct alternative:

If A is a non singular matrix of order 3, then |adj (A)| =  ______


Find the inverse of matrix B = `[(3,1, 5),(2, 7, 8),(1, 2, 5)]` by using adjoint method


Complete the following activity to verify A. adj (A) = det (A) I.

Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then

|A| = 2(____) – 0(____) + ( ) (____)

= 6 – 0 – 5

= ______ ≠ 0

Cofactors of all elements of matrix A are

A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),

A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,

A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,

A21 = _______, A22 = _______, A23 = _______,

A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),

A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = (  ),

A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.

Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`

adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`

A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I


If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.


The matrix A = `[("a",-1,4),(-3,0,1),(-1,1,2)]` is not invertible only if a = _______.


The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.


If [abc] ≠ 0, then `(["a" + "b b" + "c c" + "a"])/(["b c a"])` = ____________.


If A = `[(1 + 2"i", "i"),(- "i", 1 - 2"i")]`, where i = `sqrt-1`, then A(adj A) = ______.


If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?


If a 3 × 3 matrix A has its inverse equal to A, then A2 = ______ 


If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______ 


If A2 - A + I = 0, then A-1 = ______.


The matrix `[(lambda, 1, 0),(0, 3, 5),(0, -3, lambda)]` is invertible ______.


If A = `[(cos theta, sin theta, 0),(-sintheta, costheta, 0),(0, 0, 1)]`, where A11, A11, A13 are co-factors of a11, a12, a13 respectively, then the value of a11A11 + a12A12 + a13A13 = ______.


If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.


If A and B are two square matrices such that A2B = BA and (AB)10 = AkB10. Then, k is ______.


For an invertible matrix A, if A (adj A) = `|(20, 0),(0, 20)|`, then | A | = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×