Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If A is a non singular matrix of order 3, then |adj (A)| = ______
पर्याय
|A|2
|A|3
0
1
उत्तर
|A|2
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
Find the inverse of the following matrix (if they exist):
`[(3,-10),(2,-7)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____
Find the inverse of the following matrices by transformation method:
`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`
If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.
Choose the correct alternative.
If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______
Choose the correct alternative.
If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______
Fill in the blank :
(AT)T = _______
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
Check whether the following matrices are invertible or not:
`[(1, 0),(0, 1)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.
If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is
If A = `[(3, 0, 0),(0, 3, 0),(0, 0, 3)]`, then |A| |adj A| = ______
If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.
For an invertible matrix A, if A . (adj A) = `[(10, 0),(0, 10)]`, then find the value of |A|.
A = `[(cos theta, - sin theta),(-sin theta, -cos theta)]` then find A−1
If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)
Find the adjoint of matrix A = `[(6, 5),(3, 4)]`
If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.
Find the inverse of the following matrix:
`[(1,-1),(2,3)]`
Find the inverse of the following matrix:
`[(1,2,3),(0,2,4),(0,0,5)]`
Solve by matrix inversion method:
2x + 3y – 5 = 0; x – 2y + 1 = 0.
If A = `((-1,2),(1,-4))` then A(adj A) is
If A and B non-singular matrix then, which of the following is incorrect?
Solve by using matrix inversion method:
x - y + z = 2, 2x - y = 0, 2y - z = 1
If A = `[(x,1),(1,0)]` and A = A , then x = ______.
If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______
If A2 - A + I = 0, then A-1 = ______.
If A = `[(5, -4), (7, -5)]`, then 3A-1 = ______
If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.
If A = `[(-i, 0),(0, i)]`, then ATA is equal to
If A, B are two square matries, such that AB = B, BA = A and n ∈ N then (A + B)n =
Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.
If A = `[(1, 2),(3, 4)]` verify that A (adj A) = (adj A) A = |A| I
If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`
Find (AB)–1 by adjoint method.
Solution:
AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`
AB = [ ]
|AB| = `square`
M11 = –2 ∴ A11 = (–1)1+1 . (–2) = –2
M12 = –3 A12 = (–1)1+2 . (–3) = 3
M21 = 4 A21 = (–1)2+1 . (4) = –4
M22 = 3 A22 = (–1)2+2 . (3) = 3
Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`
adj (A) = [ ]
A–1 = `1/|A| . adj(A)`
A–1 = `square`
if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.