Advertisements
Advertisements
प्रश्न
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
उत्तर
Let A = `[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
∴ |A| = `|(2, -3, 3),(2, 2, 3),(3, -2, 2)|`
= 2(4 + 6) + 3(4 – 9) + 3(–4 – 6)
= 20 – 15 – 30
= – 25 ≠ 0
∴ A–1 exists.
Consider AA–1 = I
∴ `[(2, -3, 3),(2, 2, 3),(3, -2, 2)] "A"^-1 = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Applying R1 → 2R1 – R3, we get
`[(1, -4, 4),(2, 2, 3),(3, -2, 2)] "A"^1 = [(2, 0, -1),(0, 1, 0),(0, 0, 1)]`
Applying R2 → R1 – 2R1 and R3 → R1 – 2R1, we get
`[(1, -4, 4),(0, 10, -5),(0, 10, -10)] "A"^-1 [(2, 0, -1),(-4, 1, 2),(-6, 0, 4)]`
Applying R2 → `(1/10)` R2 and R3 → `(-1/10)`R3, we get
`[(1, -4, 4),(0, 1, -1/2),(0, -1, 1)] "A"^-1 = [(2, 0, -1),(-4/10, 1/10, 2/10),(6/10, 0, -4/10)]`
Applying R1 → R1 – 4R2 and R3 → R3 + R2, we get
`[(1, 0, 2),(0, 1, -1/2),(0, 0, 1/2)] "A"^-1 = [(4/10, 4/10, -2/10),(-4/10, 1/10, 2/10),(2/10, 1/10, -2/10)]`
Applying R3 → 2R3 , we get
`[(1, 0, 2),(0, 1, -1/2),(0, 0, 1)] "A"^-1 = [(4/10, 4/10, -2/10),(-4/10, 1/10, 2/10),(4/10, 2/10, -4/10)]`
Applying R1 → R1 – 2R3 and R2 → R2 + `(1/2)`R3, we get
`[(1, 0, 0),(0, 1, 0),(0, 0,1)] "A"^-1 [(-4/10, 0, 6/10),(-2/10, 2/10, 0),(4/10, 2/10, -4/10)]`
∴ A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, 0),(2/5, 1/5, -2/5)]`.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the matrix `[(1 2 3),(1 1 5),(2 4 7)]` by adjoint method
Find the co-factor of the element of the following matrix:
`[(-1, 2),(-3, 4)]`
Find the inverse of the following matrix by the adjoint method.
`[(-1,5),(-3,2)]`
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
Find the inverse of the following matrix.
`[(0,1,2),(1,2,3),(3,1,1)]`
Choose the correct alternative.
If a 3 x 3 matrix B has it inverse equal to B, thenB2 = _______
Fill in the blank :
If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______
Fill in the blank :
If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
Check whether the following matrices are invertible or not:
`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`
`cos theta [(cos theta, sin theta),(-sin theta, cos theta)] + sin theta [(sin theta, - cos theta),(cos theta, sin theta)]` = ______
If A = `[(0, 0, -1),(0, -1, 0),(-1, 0, 0)]`, then the only correct statement about the matrix A is ______
If A = `[(2, 2),(-3, 2)]` and B = `[(0, -1),(1, 0)]`, then find the matrix (B−1 A−1)−1.
If A = `[(3, 1),(5, 2)]`, and AB = BA = I, then find the matrix B
If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB
Find the adjoint of matrix A = `[(6, 5),(3, 4)]`
If A = `[(0, 4, 3),(1, -3, -3),(-1, 4, 4)]`, then find A2 and hence find A−1
Choose the correct alternative:
If A is a non singular matrix of order 3, then |adj (A)| = ______
The value of Cofactor of element a21 in matrix A = `[(1, 2),(5, -8)]` is ______
Complete the following activity to verify A. adj (A) = det (A) I.
Given A = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` then
|A| = 2(____) – 0(____) + ( ) (____)
= 6 – 0 – 5
= ______ ≠ 0
Cofactors of all elements of matrix A are
A11 = `(-1)^2 |("( )", "( )"),("( )", "( )")|` = (______),
A12 = `(-1)^3 |(5, "( )"),("( )", 3)|` = – 15,
A13 = `(-1)^4 |(5, "( )"),("( )", 1)|` = 5,
A21 = _______, A22 = _______, A23 = _______,
A31 = `(-1)^4 |("( )", "( )"),("( )", "( )")|` = (______),
A32 = `(-1)^5 |(2, "( )"),("( )", 0)|` = ( ),
A33 = `(-1)^6 |(2, "( )"),("( )", 1)|` = 2,.
Cofactors of matrix A = `[(3, "____", "____"),("____", "____",-2),(1, "____", "____")]`
adj (A) = `[("____", "____", "____"),("____", "____","____"),("____","____","____")]`
A.adj (A) = `[(2, 0, -1),(5, 1, 0),(0, 1, 3)] [("( )", -1, 1), (-15, "( )", -5),("( )", -2, "( )")] = [(1, 0, "( )"),("( )", "( )", "( )"),(0, "( )", "( )")]` = |A|I
Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
C1 → C1 + C3
`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`
C3 → C3 + C1
`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`
C1 → C1 – 5C2, C3 → C3 – 5C2
`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`
C1 → C1 – 2C3, C2 → C2 – C3
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`
B−1 = `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`
`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Find the inverse of the following matrix:
`[(1,2,3),(0,2,4),(0,0,5)]`
If A = `[(-1,2,-2),(4,-3,4),(4,-4,5)]` then, show that the inverse of A is A itself.
Solve by matrix inversion method:
3x – y + 2z = 13; 2x + y – z = 3; x + 3y – 5z = - 8
The inverse matrix of `((3,1),(5,2))` is
If A = `((-1,2),(1,-4))` then A(adj A) is
If A = `[(1,2),(3,-5)]`, then A-1 = ?
The matrix M = `[(0,1,2),(1,2,3),(3,1,1)]` and its inverse is N = [nij]. What is the element n23 of matrix N?
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?
If A is non-singular matrix and (A + l)(A - l) = 0 then A + A-1 = ______.
If A2 - A + I = 0, then A-1 = ______.
If A = `[(2, -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.
A–1 exists if |A| = 0.
If A = `[(0, 0, 1),(0, 1, 0),(1, 0, 0)]`, then A2008 is equal to ______.
Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.
If matrix A = `[(1, 2),(4, 3)]`, such that AX = I, then X is equal to ______.
If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.
If A = `[(1, 2, 4),(4, 3, -2),(1, 0, -3)]`. Show that A–1 exists and find A–1 using column transformation.
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0