Advertisements
Advertisements
प्रश्न
Find the cofactors of the elements of the matrix
`[(-1, 2),(-3, 4)]`
उत्तर
Given, matrix is `[(-1, 2),(-3, 4)]`
Here a11 = –1; ∴ N11 = 4 and A11 = (–1)1+1 (4) = 4
a12 = 2; ∴ N12 = –3 and A12 = (–1)1+2 (–3) = 3
a21 = –3; ∴ N21 = 2 and A21 = (–1)2+1 (2) = –2
a22 = 4; ∴ N22 = –1 and A22 = (–1)2+2 (–1) = –1
∴ The required cofactors are 4, 3, –2, –1.
APPEARS IN
संबंधित प्रश्न
Solve the following equations by the inversion method :
2x + 3y = - 5 and 3x + y = 3.
Find the matrix of the co-factor for the following matrix.
`[(1,3),(4,-1)]`
If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I
Find the inverses of the following matrices by the adjoint method:
`[(1,2,3),(0,2,4),(0,0,5)]`
Find the inverse of the following matrix (if they exist):
`((1,-1),(2,3))`
Find the inverse of the following matrix (if they exist):
`[(2,0,-1),(5,1,0),(0,1,3)]`
Choose the correct answer from the given alternatives in the following question:
If A = `[(2,-4),(3,1)]`, then the adjoint of matrix A is
Choose the correct answer from the given alternatives in the following question:
If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____
Find the inverse of the following matrices by the adjoint method `[(1, 2, 3),(0, 2, 4),(0, 0, 5)]`.
Find the inverse of A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by elementary column transformations.
Choose the correct alternative.
If A2 + mA + nI = O and n ≠ 0, |A| ≠ 0, then A–1 = _______
If A is a no singular matrix, then det (A–1) = _______
Fill in the blank :
If A = `[(3, -5),(2, 5)]`, then co-factor of a12 is _______
Fill in the blank :
If A = [aij]mxm is a non-singular matrix, then A–1 = `(1)/(......)` adj(A).
Fill in the blank :
If A = `[(2, 1),(1, 1)] "and" "A"^-1 = [(1, 1),(x, 2)]`, then x = _______
Fill in the blank :
If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`
State whether the following is True or False :
If A and B are conformable for the product AB, then (AB)T = ATBT.
State whether the following is True or False :
A(adj. A) = |A| I, where I is the unit matrix.
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, -3, 3),(2, 2, 3),(3, -2, 2)]`
Find inverse of the following matrices (if they exist) by elementary transformations :
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.
The adjoint matrix of `[(3, -3, 4),(2, -3, 4),(0, -1, 1)]` is ______.
If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is
If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______
If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB
A + I = `[(3, -2),(4, 1)]` then find the value of (A + I)(A − I)
If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)
Find the inverse of A = `[(sec theta, tan theta, 0),(tan theta, sec theta, 0),(0, 0, 1)]`
Find the adjoint of the matrix A = `[(2,3),(1,4)]`
Find the inverse of the following matrix:
`[(-3,-5,4),(-2,3,-1),(1,-4,-6)]`
If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]` then, find A.
Solve by matrix inversion method:
3x – y + 2z = 13; 2x + y – z = 3; x + 3y – 5z = - 8
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
A sales person Ravi has the following record of sales for the month of January, February and March 2009 for three products A, B and C. He has been paid a commission at fixed rate per unit but at varying rates for products A, B and C.
Months | Sales in units | Commission | ||
A | B | C | ||
January | 9 | 10 | 2 | 800 |
February | 15 | 5 | 4 | 900 |
March | 6 | 10 | 3 | 850 |
Find the rate of commission payable on A, B and C per unit sold using matrix inversion method.
Weekly expenditure in an office for three weeks is given as follows. Assuming that the salary in all the three weeks of different categories of staff did not vary, calculate the salary for each type of staff, using the matrix inversion method.
Week | Number of employees | Total weekly salary (in ₹) |
||
A | B | C | ||
1st week | 4 | 2 | 3 | 4900 |
2nd week | 3 | 3 | 2 | 4500 |
3rd week | 4 | 3 | 4 | 5800 |
adj (AB) is equal to:
The inverse matrix of `((3,1),(5,2))` is
If A = `((-1,2),(1,-4))` then A(adj A) is
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?
If A = `[(0, -1, 0), (1, 0, 0), (0, 0, -1)]`, then A-1 is ______
If ω is a complex cube root of unity and A = `[(ω,0,0),(0,ω^2,0),(0,0,1)]` then A-1 = ?
If A and Bare square matrices of order 3 such that |A| = 2, |B| = 4, then |A(adj B)| = ______.
If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______
If A2 - A + I = 0, then A-1 = ______.
If A is a solution of x2 - 4x + 3 = 0 and `A=[[2,-1],[-1,2]],` then A-1 equals ______.
If matrix A = `[(3, -2, 4),(1, 2, -1),(0, 1, 1)]` and A–1 = `1/k` (adj A), then k is ______.
If A = `[(x, 1),(1, 0)]` and A = A–1, then x = ______.
For a invertible matrix A if A(adjA) = `[(10, 0),(0, 10)]`, then |A| = ______.