Advertisements
Advertisements
प्रश्न
State whether the following is True or False :
Singleton matrix is only row matrix.
पर्याय
True
False
उत्तर
Singleton matrix is also column matrix False.
APPEARS IN
संबंधित प्रश्न
Find the matrix of the co-factor for the following matrix.
`[(1,3),(4,-1)]`
Find the inverse of the following matrix.
`[(1,2),(2,-1)]`
Find the inverse of the following matrix.
`[(2,0,-1),(5,1,0),(0,1,3)]`
Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.
Find the inverse of the following matrix (if they exist):
`((2,1),(1,-1))`
Find the inverse of the following matrix (if they exist):
`[(2,1),(7,4)]`
Find the inverse of the following matrix (if they exist):
`[(3,-10),(2,-7)]`
If A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)] "and B" = [(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find a matrix X such that XA = B.
Choose the correct alternative.
If A is a 2 x 2 matrix such that A(adj. A) = `[(5, 0),(0, 5)]`, then |A| = _______
Fill in the blank :
If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`
State whether the following is True or False :
If A and B are conformable for the product AB, then (AB)T = ATBT.
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (3A – 5BT)T = 3AT – 5B.
A = `[(cos alpha, - sin alpha, 0),(sin alpha, cos alpha, 0),(0, 0, 1)]`, then A−1 is
If A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]`, then find the value of a31A31 + a32A32 + a33A33.
If f(x) = x2 − 2x − 3 then find f(A) when A = `[(1, 2),(2, 1)]`
If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).
If A = `[(1, 0, 0),(3, 3, 0),(5, 2, -1)]`, find A−1 by the adjoint method
Choose the correct alternative:
If A is a non singular matrix of order 3, then |adj (A)| = ______
If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.
If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)
If A = `[(2,-2,2),(2,3,0),(9,1,5)]` then, show that (adj A) A = O.
If A and B non-singular matrix then, which of the following is incorrect?
If A is an invertible matrix of order 2 then det (A-1) be equal
If A = `|(3,-1,1),(-15,6,-5),(5,-2,2)|` then, find the Inverse of A.
Solve by using matrix inversion method:
x - y + z = 2, 2x - y = 0, 2y - z = 1
If A = `[(1,2),(3,-5)]`, then A-1 = ?
The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.
If A2 - A + I = 0, then A-1 = ______.
If A = `[(1, tanx),(-tanx, 1)]`, then AT A–1 = ______.
Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.
If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.
If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.
If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`
Find (AB)–1 by adjoint method.
Solution:
AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`
AB = [ ]
|AB| = `square`
M11 = –2 ∴ A11 = (–1)1+1 . (–2) = –2
M12 = –3 A12 = (–1)1+2 . (–3) = 3
M21 = 4 A21 = (–1)2+1 . (4) = –4
M22 = 3 A22 = (–1)2+2 . (3) = 3
Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`
adj (A) = [ ]
A–1 = `1/|A| . adj(A)`
A–1 = `square`
if `A = [(2,-1,1),(-1,2,-1),(1,-1,2)]` then find A−1 by the adjoint method.
If A = `[(2, 3),(4, 5)]`, show that A2 – 7A – 2I = 0
If A = `[(1, 2, 4),(4, 3, -2),(1, 0, -3)]`. Show that A–1 exists and find A–1 using column transformation.