Advertisements
Advertisements
प्रश्न
Show that the matrices A = `[(2,2,1),(1,3,1),(1,2,2)]` and B = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]` are inverses of each other.
उत्तर
To prove that A and B are inverses of each other.
We have to prove that AB = BA = I.
Now AB = `[(2,2,1),(1,3,1),(1,2,2)][(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)]`
= `1/5[(2,2,1),(1,3,1),(1,2,2)][(4,-2,-1),(-1,3,-1),(-1,-2,4)]` ....[Take out 5 common from the matrix]
= `1/5[(8-2-1,-4+6-2,-2-2+4),(4-3-1,-2+9-2,-1-3+4),(4-2-2,-2+6-4,-1-2+8)] = 1/5[(5,0,0),(0,5,0),(0,0,5)]`
`= 1/5 xx 5[(1,0,0),(0,1,0),(0,0,1)] = [(1,0,0),(0,1,0),(0,0,1)]` = I
BA = `[(4/5,(-2)/5,(-1)/5),((-1)/5,3/5,(-1)/5),((-1)/5,(-2)/5,4/5)] [(2,2,1),(1,3,1),(1,2,2)]`
`= 1/5 [(4,-2,-1),(-1,3,-1),(-1,-2,4)] [(2,2,1),(1,3,1),(1,2,2)]`
`= 1/5[(8-2-1,8-6-2,4-2-2),(-2+3-1,-2+9-2,-1+3-2),(-2-2+4,-2-6+8,-1-2+8)]`
`= 1/5[(5,0,0),(0,5,0),(0,0,5)]`
`= 1/5 xx 5[(1,0,0),(0,1,0),(0,0,1)]`
`= [(1,0,0),(0,1,0),(0,0,1)]` = I
Thus AB = BA = I
Hence A and B are inverses of each other.
APPEARS IN
संबंधित प्रश्न
Find the inverse of the following matrix.
`[(0,1,2),(1,2,3),(3,1,1)]`
Find the inverse `[(1, 2, 3 ),(1, 1, 5),(2, 4, 7)]` of the elementary row tranformation.
Choose the correct alternative.
If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______
Adjoint of `[(2, -3),(4, -6)]` is _______
Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.
If A = `[(1, -1, 1),(2, 1, -3),(1, 1, 1)]`, 10B = `[(4, 2,2),(-5, 0, ∞),(1, -2, 3)]` and B is the inverse of matrix A, then α = ______
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
If AB = I and B = AT, then _______.
If A = `[(1, 1, 0),(2, 1, 5),(1, 2, 1)]`, then a11A21 + a12A22 + a13A23 is equal to ______.
If A = `[(3, 1),(-1, 2)]`, show that A2 – 5A + 7I = 0