Advertisements
Advertisements
Question
Find the inverses of the following matrices by the adjoint method:
`[(1,2,3),(0,2,4),(0,0,5)]`
Solution
Let A = `[(1,2,3),(0,2,4),(0,0,5)]`
∴ |A| = `[(1,2,3),(0,2,4),(0,0,5)]`
= 1(10 - 0) - 0 + 0
= 1(10) - 0 + 0
= 10 ≠ 0
∴ A-1 exists.
First we have to find the co-factor matrix
`= ["A"_"ij"]_(3xx3)`, where `"A"_"ij" = (-1)^("i"+"j") "M"_"ij"`
Now, A11 = `(- 1)^(1 + 1) "M"_11 = |(2,4),(0,5)| = 10 - 0 = 10`
A12 = `(- 1)^(1 + 2) "M"_12 = - |(0,4),(0,5)| = - 0 - 0 = 0`
A13 = `(- 1)^(1 + 3) "M"_13 = |(0,2),(0,0)| = 0 - 0 = 0`
A21 = `(- 1)^(2 + 1) "M"_21 = - |(2,3),(0,5)| = - 10 - 0 = - 10`
A22 = `(- 1)^(2 + 2) "M"_22 = |(1,3),(0,5)| = 5 - 0 = 5`
A23 = `(- 1)^(2 + 3) "M"_23 = - |(1,2),(0,0)| = - 0 - 0 = 0`
A31 = `(- 1)^(3 + 1) "M"_31 = |(2,3),(2,4)| = 8 - 6 = 2`
A32 = `(- 1)^(3 + 2) "M"_32 = - |(1,3),(0,4)| = - 4 - 0 = - 4`
A33 = `(- 1)^(3 + 3) "M"_33 = |(1,2),(0,2)| = 2 - 0 = 2`
∴ the co-factor matrix
`= [("A"_11,"A"_12,"A"_13),("A"_21,"A"_22,"A"_23),("A"_31,"A"_32,"A"_33)] = [(10,0,0),(-10,5,0),(2,-4,2)]`
∴ adj A = `[(10,-10,2),(0,5,-4),(0,0,2)]`
∴ A-1 = `1/|"A"|`(adj A)
`= 1/10 [(10,-10,2),(0,5,-4),(0,0,2)]`
∴ A-1 = `1/10 [(10,-10,2),(0,5,-4),(0,0,2)]`
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
If A = `[(1, 3), (3, 1)]`, Show that A2 - 2A is a scalar matrix.
Find the co-factor of the element of the following matrix.
`[(1,-1,2),(-2,3,5),(-2,0,-1)]`
Find the matrix of the co-factor for the following matrix.
`[(1, 0, 2),(-2, 1, 3),(0, 3, -5)]`
Find the inverse of the following matrix.
`[(1,2),(2,-1)]`
Find the inverse of the following matrix.
`[(2, -3),(-1, 2)]`
Find AB, if A = `((1,2,3),(1,-2,-3))` and B = `((1,-1),(1,2),(1,-2))`. Examine whether AB has inverse or not.
Find the inverse of the following matrix (if they exist):
`((1,3),(2,7))`
Find the inverse of the following matrix (if they exist):
`[(2,-3,3),(2,2,3),(3,-2,2)]`
Choose the correct alternative.
If AX = B, where A = `[(-1, 2),(2, -1)], "B" = [(1),(1)]`, then X = _______
If A = `[(1, 2),(-3, -1)], "B" = [(-1, 0),(1, 5)]`, then AB =
Fill in the blank :
If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`
Find the inverse of `[(3, 1, 5),(2, 7, 8),(1, 2, 5)]` by adjoint method.
A = `[(cos alpha, - sin alpha, 0),(sin alpha, cos alpha, 0),(0, 0, 1)]`, then A−1 is
The solution (x, y, z) of the equation `[(1, 0, 1),(-1, 1, 0),(0, -1, 1)] [(x),(y),(z)] = [(1),(1),(2)]` is (x, y, z) =
If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB
Complete the following activity to find inverse of matrix using elementary column transformations and hence verify.
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]` B−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
C1 → C1 + C3
`[("( )", 0, -1),("( )", 1, 0),("( )", 1, 3)]` B−1 = `[("( )", 0, 0),("( )", 1, 0),("( )", 0, 1)]`
C3 → C3 + C1
`[(1, 0, 0),("( )", 1, "( )"),(3, 1, "( )")]` B−1 = `[(1, 0, "( )"),(0, 1, 0),("( )", 0, "( )")]`
C1 → C1 – 5C2, C3 → C3 – 5C2
`[(1, "( )", 0),(0, 1, 0),("( )", 1, "( )")]` B−1 = `[(1, 0, "( )"),("( )", 1, -5),(1, "( )", 2)]`
C1 → C1 – 2C3, C2 → C2 – C3
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]` B−1 = `[(3, -1, "( )"),("( )", 6, -5),(5, "( )", "( )")]`
B−1 = `[("( )", "( )", "( )"),("( )", "( )", "( )"),("( )", "( )", "( )")]`
`[(2, "( )", -1),("( )", 1, 0),(0, 1, "( )")] [(3, "( )", "( )"),("( )", 6, "( )"),("( )", -2, "( )")] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
If A = `[(1,3,3),(1,4,3),(1,3,4)]` then verify that A(adj A) = |A| I and also find A-1.
Find the inverse of the following matrix:
`[(3,1),(-1,3)]`
If A = `[(2,3),(1,-6)]` and B = `[(-1,4),(1,-2)]`, then verify adj (AB) = (adj B)(adj A)
If A-1 = `[(1,0,3),(2,1,-1),(1,-1,1)]` then, find A.
Solve by matrix inversion method:
x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4
adj (AB) is equal to:
Which of the following matrix has no inverse
If A = `[(2,3),(1,2)]`, B = `[(1,0),(3,1)]`, then B-1A-1 = ?
The sum of the cofactors of the elements of second row of the matrix `[(1, 3, 2), (-2, 0, 1), (5, 2, 1)]` is ____________.
If A = `[(p/4, 0, 0), (0, q/5, 0), (0, 0, r/6)]` and `"A"^-1 = [(1/4, 0, 0), (0, 1/5, 0), (0, 0, 1/6)]`, then p + q + r = ______
If A = `[(3, -3, 4), (2, -3, 4), (0, -1, 1)]` then A-1 = ______
If A = `[(2, -3), (3, 5)]`, then |Adj A| is equal to ______
If a 3 × 3 matrix A has its inverse equal to A, then A2 = ______
If A is a solution of x2 - 4x + 3 = 0 and `A=[[2,-1],[-1,2]],` then A-1 equals ______.
If A = `[(2, 2),(4, 5)]` and A–1 = λ(adj(A)), then λ = ______ .
If A–1 = `[(3, -1, 1),(-15, 6, -5),(5, -2, 2)]`, then adj A = ______.
If A = `[(2, -3, 3),(2, 2, 3),(3, "p", 2)]` and A–1 = `[(-2/5, 0, 3/5),(-1/5, 1/5, "q"),(2/5, 1/5, -2/5)]`, then ______.
Choose the correct option:
If X, Y, Z are non zero real numbers, then the inverse of matrix A = `[(x, 0, 0),(0, y, 0),(0, 0, z)]`
If A = `[(2, 3),(a, 6)]` is a singular matrix, then a = ______.
If matrix A = `[(3, -2, 4),(1, 2, -1),(0, 1, 1)]` and A–1 = `1/k` (adj A), then k is ______.
Matrix A = `[(1, 2, 3),(1, 1, 5),(2, 4, 7)]` then the value of a31 A31 + a32 A32 + a33 A33 is ______.
If A = `[(2, 2),(-3, 2)]`, B = `[(0, -1),(1, 0)]`, then (B–1 A–1)–1 is equal to ______.
If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.