English

If A = [-4-3-3101443], find adj (A). - Mathematics and Statistics

Advertisements
Advertisements

Question

If A = `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`, find adj (A).

Sum

Solution

A11 = (–1)1+1 M11 = `1|(0, 1),(4, 3)|` = 1(0 – 4) = – 4

A12 = (–1)1+2 M12 = `(-1)|(1, 1),(4, 3)|` = (–1)(3 – 4) = (–1)(–1) = 1

A13 = (–1)1+3 M13 = `1|(1, 0),(4, 4)|` = 1(4 – 0) = (1)(4) = 4

A21 = (–1)2+1 M21 = `(-1)|(-3, -3),(4, 3)|` = (–1)(– 9 + 12) = (–1)(3) = – 3

A22 = (–1)2+2 M22 = `1|(-4, -3),(4, 3)|` = 1(–12 + 12) = 1(0) = 0

A23 = (–1)2+3 M23 = `(-1)|(-4, -3),(4, 4)|` = (–1)(–16 + 12) = (–1)(–4) = 4

A31 = (–1)3+1 M31 = `1|(-3, -3),(0, 1)|` = 1(– 3 – 0) = – 3

A32 = (–1)3+2 M32 = `(-1)|(-4, -3),(1, 1)|` = (–1)(– 4 + 3) = (–1)(–1) = 1

A33 = (–1)3+3 M33 = `1|(-4, -3),(1, 0)|` = 1(0 + 3) = (1)(3) = 3

adj (A) = `[("A"_11, "A"_12, "A"_13),("A"_21, "A"_22, "A"_23),("A"_31, "A"_32, "A"_33)]``

= `[(-4, 1, 4),(-3, 0, 4),(-3, 1, 3)]`

= `[(-4, -3, -3),(1, 0, 1),(4, 4, 3)]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.2: Matrics - Short Answers II

RELATED QUESTIONS

 Find the inverse of the following matrix by elementary row transformations if it exists. `A=[[1,2,-2],[0,-2,1],[-1,3,0]]`


Find the matrix of the co-factor for the following matrix.

`[(1,3),(4,-1)]`


Find the adjoint of the following matrix.

`[(2,-3),(3,5)]`


If A = `[(1,-1,2),(3,0,-2),(1,0,3)]` verify that A (adj A) = (adj A) A = | A | I


Find the inverse of the following matrix (if they exist):

`[(2,1),(7,4)]`


Choose the correct answer from the given alternatives in the following question:

If A = `[(1,2),(3,4)]`, and A (adj A) = kI, then the value of k is


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha,-"sin"alpha),("sin"alpha,"cos"alpha)]`, then A-1 = _____


Choose the correct answer from the given alternatives in the following question:

If A = `[("cos"alpha, - "sin"alpha,0),("sin"alpha,"cos"alpha,0),(0,0,1)]` where α ∈ R, then [F(α)]-1 is


Find the inverse of the following matrices by the adjoint method `[(2, -2),(4, 5)]`.


Find the inverse of the following matrices by transformation method:

`[(2, 0, −1),(5, 1, 0),(0, 1, 3)]`


Fill in the blank :

If a1x + b1y = c1 and a2x + b2y = c2, then matrix form is `[(......, ......),(......, ......)] = [(x),(y)] = [(......),(......)]`


Check whether the following matrices are invertible or not:

`[(3, 4, 3),(1, 1, 0),(1, 4, 5)]`


Find inverse of the following matrices (if they exist) by elementary transformations :

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


A = `[(cos alpha, - sin alpha,  0),(sin alpha, cos alpha,  0),(0, 0, 1)]`, then A−1 is


If ω is a complex cube root of unity, then the matrix A = `[(1, ω^2, ω),(ω^2, ω, 1),(ω, 1, ω^2)]` is


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, then A10 = ______


If A(α) = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]` then prove that A2(α) = A(2α)


If A = `[(1, 2),(3, -2),(-1, 0)]` and B = `[(1, 3, 2),(4, -1, 3)]` then find the order of AB


If A = `[(-1),(2),(3)]`, B = `[(3, 1, -2)]`, find B'A'


If A is invertible matrix of order 3 and |A| = 5, then find |adj A|


If A = `[(2, 4),(1, 3)]` and B = `[(1, 1),(0, 1)]` then find (A−1 B−1)


Find A–1 using adjoint method, where A = `[(cos theta, sin theta),(-sin theta, cos theta)]`


Find the adjoint of matrix A = `[(2, 0, -1),(3, 1, 2),(-1, 1, 2)]`


Solve by matrix inversion method:

x – y + 2z = 3; 2x + z = 1; 3x + 2y + z = 4


If A = `[(1,2),(3,-5)]`, then A-1 = ?


If A = `[(4,5),(2,1)]` and A2 - 5A - 6l = 0, then A-1 = ?


If A = `[(x,1),(1,0)]` and A = A , then x = ______.


If A = `[(0, 0, 1), (0, 1, 0), (1, 0, 0)]`, then A-1 = ______ 


If `A = [[-3,1],[-4,3]]` and A-1 = αA, then α = ______.


If A = `[(cos theta, sin theta, 0),(-sintheta, costheta, 0),(0, 0, 1)]`, where A11, A11, A13 are co-factors of a11, a12, a13 respectively, then the value of a11A11 + a12A12 + a13A13 = ______.


If matrix A = `[(1, -1),(2, 3)]` such that AX = I, then X is equal to ______.


Find the inverse of the matrix A by using adjoint method.

where A = `[(-3, -1, 1),(0, 0, 1),(-15, 6, -6)]`


The number of solutions of equation x2 – x3 = 1, – x1 + 2x3 = 2, x1 – 2x2 = 3 is ______.


If A = `[(cos α, sin α),(-sin α, cos α)]`, then find α satisfying `0 < α < π/2`, when A + AT = `sqrt(2)  l_2` where AT is transpose of A.


If A = `[(cos α, sin α),(- sin α, cos α)]`, then the matrix A is ______.


If A = `[(4, 3, 2),(-1, 2, 0)]`, B = `[(1, 2),(-1, 0),(1, -2)]`

Find (AB)–1 by adjoint method.

Solution:

AB = `[(4, 3, 2),(-1, 2, 0)] [(1, 2),(-1, 0),(1, -2)]`

AB = [  ]

|AB| =  `square`

M11 = –2  ∴ A11 = (–1)1+1 . (–2) = –2

M12 = –3     A12 = (–1)1+2 . (–3) = 3

M21 = 4       A21 = (–1)2+1 . (4) = –4

M22 = 3       A22 = (–1)2+2 . (3) = 3

Cofactor Matrix [Aij] = `[(-2, 3),(-4, 3)]`

adj (A) = [  ]

A–1 = `1/|A| . adj(A)`

A–1 = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×