Advertisements
Advertisements
Question
State whether the following is True or False :
Single element matrix is row as well as column matrix.
Options
True
False
Solution
Single element matrix is row as well as column matrix True.
APPEARS IN
RELATED QUESTIONS
Solve the following equations by the method of reduction :
2x-y + z=1, x + 2y +3z = 8, 3x + y-4z=1.
For what values of k, the system of linear equations
x + y + z = 2
2x + y – z = 3
3x + 2y + kz = 4
has a unique solution?
Prove that `|(yz-x^2,zx-y^2,xy-z^2),(zx-y^2,xy-z^2,yz-x^2),(xy-z^2,yz-x^2,zx-y^2)|`is divisible by (x + y + z) and hence find the quotient.
Apply the given elementary transformation on each of the following matrices `[(2, 4),(1, -5)]`, C1 ↔ C2.
Apply the given elementary transformation on each of the following matrices `[(3, 1, -1),(1, 3, 1),(-1, 1, 3)]`, 3R2 and C2 ↔ C2 – 4C1.
Find the adjoint of the following matrices : `[(2, -3),(3, 5)]`
Find the adjoint of the following matrices : `[(1, -1, 2),(-2, 3, 5),(-2, 0, -1)]`
Solve the following :
If A = `[(1, 0, 0),(2, 1, 0),(3, 3, 1)]`, the reduce it to unit matrix by using row transformations.
Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular
State whether the following statement is True or False:
After applying elementary transformation R1 – 3R2 on matrix `[(3, -2),(1, 4)]` we get `[(0, -12),(1, 4)]`
The cofactors of the elements of the first column of the matrix A = `[(2,0,-1),(3,1,2),(-1,1,2)]` are ______.
If AX = B, where A = `[(1, 2, 3), (-1, 1, 2), (1, 2, 4)]` and B = `[(1), (2), (3)]`, then X is equal to ______
If possible, find BA and AB, where A = `[(2, 1, 2),(1, 2, 4)]`, B = `[(4, 1),(2, 3),(1, 2)]`
If P = `[(x, 0, 0),(0, y, 0),(0, 0, z)]` and Q = `[("a", 0, 0),(0, "b", 0),(0, 0, "c")]`, prove that PQ = `[(x"a", 0, 0),(0, y"b", 0),(0, 0, z"c")]` = QP
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = A
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`
If A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]`, then A – B is equal to ______.
In applying one or more row operations while finding A–1 by elementary row operations, we obtain all zeros in one or more, then A–1 ______.
If A = `[(2, 3, -1),(1, 4, 2)]` and B = `[(2, 3),(4, 5),(2, 1)]`, then AB and BA are defined and equal.