Advertisements
Advertisements
Question
If A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]`, then A – B is equal to ______.
Options
I
O
2I
`1/2"I"`
Solution
If A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]`, then A – B is equal to `1/2"I"`.
Explanation:
Given that: A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`
And B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]`
A – B = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))] - 1/pi[(-cos^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), -tan^-1(pix))]`
= `1/pi [(sin^-1(xpi) + cos^-1(xpi), tan^-1(x/pi) - tan^-1(x/pi)),(sin^-1(x/pi) -sin^-1(x/pi), cot^-1(pix) + tan^-1(pix))]`
= `1/pi[(pi/2, 0),(0, pi/2)]` ......`[(because sin^-1x + cos^-1x = pi/2),(tan^-1x + cot^-1x = pi/2)]`
= `1/pi xx pi/2 [(1, 0),(0, 1)]`
= `1/2"I"`
APPEARS IN
RELATED QUESTIONS
The sum of three numbers is 6. When second number is subtracted from thrice the sum of first and third number, we get number 10. Four times the sum of third number is subtracted from five times the sum of first and second number, the result is 3. Using above information, find these three numbers by matrix method.
Solve the following equations by the method of reduction :
2x-y + z=1, x + 2y +3z = 8, 3x + y-4z=1.
If `A=|[2,0,-1],[5,1,0],[0,1,3]|` , then find A-1 using elementary row operations
Using the properties of determinants, solve the following for x:
`|[x+2,x+6,x-1],[x+6,x-1,x+2],[x-1,x+2,x+6]|=0`
Using properties of determinants, prove that :
`|[1+a,1,1],[1,1+b,1],[1,1,1+c]|=abc + bc + ca + ab`
The cost of 2 books, 6 notebooks and 3 pens is Rs 40. The cost of 3 books, 4 notebooks and 2 pens is Rs 35, while the cost of 5 books, 7 notebooks and 4 pens is Rs 61. Using this information and matrix method, find the cost of 1 book, 1 notebook and 1 pen separately.
2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1
In the following matrix equation use elementary operation R2 → R2 + R1 and the equation thus obtained:
Use elementary column operation C2 → C2 + 2C1 in the following matrix equation : \[\begin{bmatrix} 2 & 1 \\ 2 & 0\end{bmatrix} = \begin{bmatrix}3 & 1 \\ 2 & 0\end{bmatrix}\begin{bmatrix}1 & 0 \\ - 1 & 1\end{bmatrix}\]
If three numbers are added, their sum is 2. If two times the second number is subtracted from the sum of the first and third numbers, we get 8, and if three times the first number is added to the sum of the second and third numbers, we get 4. Find the numbers using matrices.
Using elementary row operations, find the inverse of the matrix A = `((3, 3,4),(2,-3,4),(0,-1,1))` and hence solve the following system of equations : 3x - 3y + 4z = 21, 2x -3y + 4z = 20, -y + z = 5.
Apply the given elementary transformation on each of the following matrices `[(2, 4),(1, -5)]`, C1 ↔ C2.
Find the cofactor matrix, of the following matrices: `[(5, 8, 7),(-1, -2, 1),(-2, 1, 1)]`
Find the adjoint of the following matrices : `[(2, -3),(3, 5)]`
Choose the correct alternative.
If A = `[(2, 5),(1, 3)]`, then A–1 = _______
Fill in the blank :
Order of matrix `[(2, 1, 1),(5, 1, 8)]` is _______
Solve the following :
If A = `[(1, 0, 0),(2, 1, 0),(3, 3, 1)]`, the reduce it to unit matrix by using row transformations.
Choose the correct alternative:
If A = `[(1, 2),(2, -1)]`, then adj (A) = ______
Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular
The suitable elementary row transformation which will reduce the matrix `[(1, 0),(2, 1)]` into identity matrix is ______
Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations
If A is a 3 × 3 matrix and |A| = 2, then the matrix represented by A (adj A) is equal to.
The cofactors of the elements of the first column of the matrix A = `[(2,0,-1),(3,1,2),(-1,1,2)]` are ______.
If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______
If `overlinea = hati + hatj + hatk, overlinea . overlineb = 1` and `overlinea xx overlineb = hatj - hatk,` then `overlineb` = ______
If A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]`, then (adj A)A = ______
If A = `[(1, 2, 1), (3, 2, 3), (2, 1, 2)]`, then `a_11A_11 + a_21A_21 + a_31A_31` = ______
The inverse of a symmetric matrix is ______.
If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?
Find non-zero values of x satisfying the matrix equation:
`x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]`
Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`
If possible, find BA and AB, where A = `[(2, 1, 2),(1, 2, 4)]`, B = `[(4, 1),(2, 3),(1, 2)]`
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (A′)′ = A
If A = `[(0, -1, 2),(4, 3, -4)]` and B = `[(4, 0),(1, 3),(2, 6)]`, then verify that: (kA)' = (kA')
If `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, then find values of x, y, z and w.
If A = `[(1, 5),(7, 12)]` and B `[(9, 1),(7, 8)]`, find a matrix C such that 3A + 5B + 2C is a null matrix.
Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`
If possible, using elementary row transformations, find the inverse of the following matrices
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
If `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, then the value of x + y is ______.
On using elementary row operation R1 → R1 – 3R2 in the following matrix equation: `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, we have: ______.
A matrix denotes a number.
If (AB)′ = B′ A′, where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.
If `[(2, 0, 7),(0, 1, 0),(1, -2, 1)] [(-x, 14x, 7x),(0, 1, 0),(x, -4x, -2x)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`then find the value of x
If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|`
What is the maximum value of f(x)?