English

Solve the Following Equations by the Method of Reduction 2x-y + z=1,  x + 2y +3z = 8, 3x + y-4z=1. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following equations by the method of reduction :

2x-y + z=1,  x + 2y +3z = 8, 3x + y-4z=1.

Solution

2x-y + z=1

x + 2y +3z = 8

3x + y-4z=1

`[[2,-1,1],[1,2,3],[3,1,-4]][[x],[y],[z]]=[[1],[8],[1]]`

R3 → R3 – 3R2

`[[2,-1,1],[1,2,3],[0,-5,-13]][[x],[y],[z]]=[[1],[8],[-23]]`

R2 → R2 – 1/2 R1

`[[2,-1,1],[0,5/2,5/2],[0,-5,-13]][[x],[y],[z]]=[[1],[15/2],[-23]]`

R2 → 2/5 R2

`[[2,-1,1],[0,1,1],[0,-5,-13]][[x],[y],[z]]=[[1],[3],[-23]]`

R3 → R3 + 5R2

`[[2,-1,1],[0,1,1],[0,0,-8]][[x],[y],[z]]=[[1],[3],[-8]]`

R1→ R1 + R2 ;

R3→ R3 x  -(1/8 )

`[[2,0,2],[0,1,1],[0,0,1]][[x],[y],[z]]=[[4],[3],[1]]`

R1→ R1 x (1/2)

R2→ R2 – R3

`[[1,0,1],[0,1,0],[0,0,1]][[x],[y],[z]]=[[2],[2],[1]]`

R1 → R1 – R3

`[[1,0,0],[0,1,0],[0,0,1]][[x],[y],[z]]=[[1],[2],[1]]`

` [[x],[y],[z]]=[[1],[2],[1]]`

x=1, y=2, z=1

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (October)

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

For what values of k, the system of linear equations

x + y + z = 2
2x + y – z = 3
3x + 2y + kz = 4

has a unique solution?

 


Prove that  `|(yz-x^2,zx-y^2,xy-z^2),(zx-y^2,xy-z^2,yz-x^2),(xy-z^2,yz-x^2,zx-y^2)|`is divisible by (x + y + z) and hence find the quotient.


2x − 3z + w = 1
x − y + 2w = 1
− 3y + z + w = 1
x + y + z = 1


Use elementary column operations  \[C_2 \to C_2 - 2 C_1\] in the matrix equation \[\begin{pmatrix}4 & 2 \\ 3 & 3\end{pmatrix} = \begin{pmatrix}1 & 2 \\ 0 & 3\end{pmatrix}\begin{pmatrix}2 & 0 \\ 1 & 1\end{pmatrix}\] .


If three numbers are added, their sum is 2. If two times the second number is subtracted from the sum of the first and third numbers, we get 8, and if three times the first number is added to the sum of the second and third numbers, we get 4. Find the numbers using matrices. 


Apply the given elementary transformation on each of the following matrices `[(3, 1, -1),(1, 3, 1),(-1, 1, 3)]`, 3R2 and C2 ↔ C2 – 4C1.


Transform `[(1, -1, 2),(2, 1, 3),(3, 2, 4)]` into an upper traingular matrix by suitable row transformations.


Find the cofactor matrix, of the following matrices : `[(1, 2),(5, -8)]`


Find the adjoint of the following matrices : `[(2, -3),(3, 5)]`


Choose the correct alternative.

If A = `[("a", 0, 0),(0, "a", 0),(0, 0,"a")]`, then |adj.A| = _______


Fill in the blank :

Order of matrix `[(2, 1, 1),(5, 1, 8)]` is _______


If three numbers are added, their sum is 2. If 2 times the second number is subtracted from the sum of first and third numbers, we get 8. If three times the first number is added to the sum of second and third numbers, we get 4. Find the numbers using matrices.


Matrix `[("a", "b", "c"),("p", "q", "r"),(2"a" - "p", 2"b" - "q", 2"c" - "r")]` is a singular


Find the inverse of matrix A = `[(1, 0, 1),(0, 2, 3),(1, 2, 1)]` by using elementary row transformations 


For which values of xis the matrix

`[(3,-1+x,2),(3,-1,x+2),(x+3,-1,2)]` non-invertible?


If `overlinea = 3hati + hatj + 4hatk, overlineb = 2hati - 3hatj + lambdahatk, overlinec = hati + 2hatj - 4hatk` and `overlinea.(overlineb xx overlinec) = 47`, then λ is equal to ______


If A = `[(1, 1, -1), (1, -2, 1), (2, -1, -3)]`, then (adj A)A = ______


Let F(α) = `[(cosalpha, -sinalpha, 0), (sinalpha, cosalpha, 0), (0, 0, 1)]` where α ∈ R. Then [F(α)]-1 is equal to ______ 


If `[(1, 0, -1),(0, 2, 1),(1, -2, 0)] [(x),(y),(z)] = [(1),(2),(3)]`, then the values of x, y, z respectively are ______.


If A = `[(1, 2, 1), (3, 2, 3), (2, 1, 2)]`, then `a_11A_11 + a_21A_21 + a_31A_31` = ______ 


In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: elements a23, a31, a12 


Find the matrix A satisfying the matrix equation:

`[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]`


Find A, if `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]`


Solve for x and y: `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


If A = `[(1, 5),(7, 12)]` and B  `[(9, 1),(7, 8)]`, find a matrix C such that 3A + 5B + 2C is a null matrix.


If P(x) = `[(cosx, sinx),(-sinx, cosx)]`, then show that P(x) . (y) = P(x + y) = P(y) . P(x)


Find x, y, z if A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` satisfies A′ = A–1.


In applying one or more row operations while finding A–1 by elementary row operations, we obtain all zeros in one or more, then A–1 ______.


`abs((1,1,1),("e",0,sqrt2),(2,2,2))` is equal to ____________.


If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|` 

What is the maximum value of f(x)?


if `A = [(2,5),(1,3)] "then" A^-1` = ______


If `[(3,0),(0,2)][(x),(y)] = [(3),(2)], "then"  x = 1  "and"  y = -1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×